知情剔除:数据和专家信息的参数组合

Pub Date : 2024-04-05 DOI:10.1016/j.jspi.2024.106171
Hansjörg Albrecher , Martin Bladt
{"title":"知情剔除:数据和专家信息的参数组合","authors":"Hansjörg Albrecher ,&nbsp;Martin Bladt","doi":"10.1016/j.jspi.2024.106171","DOIUrl":null,"url":null,"abstract":"<div><p>The statistical censoring setup is extended to the situation when random measures can be assigned to the realization of datapoints, leading to a new way of incorporating expert information into the usual parametric estimation procedures. The asymptotic theory is provided for the resulting estimators, and some special cases of practical relevance are studied in more detail. Although the proposed framework mathematically generalizes censoring and coarsening at random, and borrows techniques from M-estimation theory, it provides a novel and transparent methodology which enjoys significant practical applicability in situations where expert information is present. The potential of the approach is illustrated by a concrete actuarial application of tail parameter estimation for a heavy-tailed MTPL dataset with limited available expert information.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0378375824000284/pdfft?md5=89a65e4806020bf82eea7d220ec50689&pid=1-s2.0-S0378375824000284-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Informed censoring: The parametric combination of data and expert information\",\"authors\":\"Hansjörg Albrecher ,&nbsp;Martin Bladt\",\"doi\":\"10.1016/j.jspi.2024.106171\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>The statistical censoring setup is extended to the situation when random measures can be assigned to the realization of datapoints, leading to a new way of incorporating expert information into the usual parametric estimation procedures. The asymptotic theory is provided for the resulting estimators, and some special cases of practical relevance are studied in more detail. Although the proposed framework mathematically generalizes censoring and coarsening at random, and borrows techniques from M-estimation theory, it provides a novel and transparent methodology which enjoys significant practical applicability in situations where expert information is present. The potential of the approach is illustrated by a concrete actuarial application of tail parameter estimation for a heavy-tailed MTPL dataset with limited available expert information.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000284/pdfft?md5=89a65e4806020bf82eea7d220ec50689&pid=1-s2.0-S0378375824000284-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000284\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000284","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

统计剔除设置被扩展到可以为数据点的实现分配随机度量的情况,从而为将专家信息纳入通常的参数估计程序提供了一种新方法。我们为由此产生的估计器提供了渐近理论,并对一些具有实际意义的特殊情况进行了更详细的研究。尽管所提出的框架在数学上概括了随机普查和粗化,并借鉴了 M 估计理论的技术,但它提供了一种新颖、透明的方法,在存在专家信息的情况下具有重要的实际应用价值。通过对重尾 MTPL 数据集尾部参数估计的具体精算应用,在专家信息有限的情况下,说明了该方法的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Informed censoring: The parametric combination of data and expert information

The statistical censoring setup is extended to the situation when random measures can be assigned to the realization of datapoints, leading to a new way of incorporating expert information into the usual parametric estimation procedures. The asymptotic theory is provided for the resulting estimators, and some special cases of practical relevance are studied in more detail. Although the proposed framework mathematically generalizes censoring and coarsening at random, and borrows techniques from M-estimation theory, it provides a novel and transparent methodology which enjoys significant practical applicability in situations where expert information is present. The potential of the approach is illustrated by a concrete actuarial application of tail parameter estimation for a heavy-tailed MTPL dataset with limited available expert information.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信