参数向量维度不断增加的网络数据模型的非渐近模型选择

Pub Date : 2024-04-05 DOI:10.1016/j.jspi.2024.106173
Sean Eli , Michael Schweinberger
{"title":"参数向量维度不断增加的网络数据模型的非渐近模型选择","authors":"Sean Eli ,&nbsp;Michael Schweinberger","doi":"10.1016/j.jspi.2024.106173","DOIUrl":null,"url":null,"abstract":"<div><p>Model selection for network data is an open area of research. Using the <span><math><mi>β</mi></math></span>-model as a convenient starting point, we propose a simple and non-asymptotic approach to model selection of <span><math><mi>β</mi></math></span>-models with and without constraints. Simulations indicate that the proposed model selection approach selects the data-generating model with high probability, in contrast to classical and extended Bayesian Information Criteria. We conclude with an application to the Enron email network, which has 181,831 connections among 36,692 employees.</p></div>","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Non-asymptotic model selection for models of network data with parameter vectors of increasing dimension\",\"authors\":\"Sean Eli ,&nbsp;Michael Schweinberger\",\"doi\":\"10.1016/j.jspi.2024.106173\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Model selection for network data is an open area of research. Using the <span><math><mi>β</mi></math></span>-model as a convenient starting point, we propose a simple and non-asymptotic approach to model selection of <span><math><mi>β</mi></math></span>-models with and without constraints. Simulations indicate that the proposed model selection approach selects the data-generating model with high probability, in contrast to classical and extended Bayesian Information Criteria. We conclude with an application to the Enron email network, which has 181,831 connections among 36,692 employees.</p></div>\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0378375824000302\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0378375824000302","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

网络数据的模型选择是一个开放的研究领域。我们将 β 模型作为一个方便的起点,提出了一种简单、非渐进的方法来选择有约束和无约束的 β 模型。模拟结果表明,与经典贝叶斯信息标准和扩展贝叶斯信息标准相比,所提出的模型选择方法能高概率地选择数据生成模型。最后,我们将应用于安然公司的电子邮件网络,该网络在 36,692 名员工中拥有 181,831 个连接。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
分享
查看原文
Non-asymptotic model selection for models of network data with parameter vectors of increasing dimension

Model selection for network data is an open area of research. Using the β-model as a convenient starting point, we propose a simple and non-asymptotic approach to model selection of β-models with and without constraints. Simulations indicate that the proposed model selection approach selects the data-generating model with high probability, in contrast to classical and extended Bayesian Information Criteria. We conclude with an application to the Enron email network, which has 181,831 connections among 36,692 employees.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信