{"title":"修正的广义多维分数卡多姆采夫-彼得维亚什维利方程的精确解和分岔","authors":"MINYUAN LIU, HUI XU, ZENGGUI WANG, GUIYING CHEN","doi":"10.1142/s0218348x24500464","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the exact solutions of a modified generalized multidimensional fractional Kadomtsev–Petviashvili (KP) equation by the bifurcation method. First, the equation is converted into a planar dynamical system through fractional complex wave transformation. The phase portraits of the equation and qualitative analysis are presented under different bifurcation conditions. Then, the bounded and unbounded traveling wave solutions, including periodic, kink, anti-kink, dark-solitary, bright-solitary and breaking wave solutions, are acquired by integrating along different orbits. Finally, numerical simulations of the dynamic behaviors of the solutions obtained are graphically illustrated by choosing appropriate parameters.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXACT SOLUTIONS AND BIFURCATION OF A MODIFIED GENERALIZED MULTIDIMENSIONAL FRACTIONAL KADOMTSEV–PETVIASHVILI EQUATION\",\"authors\":\"MINYUAN LIU, HUI XU, ZENGGUI WANG, GUIYING CHEN\",\"doi\":\"10.1142/s0218348x24500464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the exact solutions of a modified generalized multidimensional fractional Kadomtsev–Petviashvili (KP) equation by the bifurcation method. First, the equation is converted into a planar dynamical system through fractional complex wave transformation. The phase portraits of the equation and qualitative analysis are presented under different bifurcation conditions. Then, the bounded and unbounded traveling wave solutions, including periodic, kink, anti-kink, dark-solitary, bright-solitary and breaking wave solutions, are acquired by integrating along different orbits. Finally, numerical simulations of the dynamic behaviors of the solutions obtained are graphically illustrated by choosing appropriate parameters.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
EXACT SOLUTIONS AND BIFURCATION OF A MODIFIED GENERALIZED MULTIDIMENSIONAL FRACTIONAL KADOMTSEV–PETVIASHVILI EQUATION
In this paper, we investigate the exact solutions of a modified generalized multidimensional fractional Kadomtsev–Petviashvili (KP) equation by the bifurcation method. First, the equation is converted into a planar dynamical system through fractional complex wave transformation. The phase portraits of the equation and qualitative analysis are presented under different bifurcation conditions. Then, the bounded and unbounded traveling wave solutions, including periodic, kink, anti-kink, dark-solitary, bright-solitary and breaking wave solutions, are acquired by integrating along different orbits. Finally, numerical simulations of the dynamic behaviors of the solutions obtained are graphically illustrated by choosing appropriate parameters.