修正的广义多维分数卡多姆采夫-彼得维亚什维利方程的精确解和分岔

Fractals Pub Date : 2024-04-05 DOI:10.1142/s0218348x24500464
MINYUAN LIU, HUI XU, ZENGGUI WANG, GUIYING CHEN
{"title":"修正的广义多维分数卡多姆采夫-彼得维亚什维利方程的精确解和分岔","authors":"MINYUAN LIU, HUI XU, ZENGGUI WANG, GUIYING CHEN","doi":"10.1142/s0218348x24500464","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we investigate the exact solutions of a modified generalized multidimensional fractional Kadomtsev–Petviashvili (KP) equation by the bifurcation method. First, the equation is converted into a planar dynamical system through fractional complex wave transformation. The phase portraits of the equation and qualitative analysis are presented under different bifurcation conditions. Then, the bounded and unbounded traveling wave solutions, including periodic, kink, anti-kink, dark-solitary, bright-solitary and breaking wave solutions, are acquired by integrating along different orbits. Finally, numerical simulations of the dynamic behaviors of the solutions obtained are graphically illustrated by choosing appropriate parameters.</p>","PeriodicalId":501262,"journal":{"name":"Fractals","volume":"88 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-04-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"EXACT SOLUTIONS AND BIFURCATION OF A MODIFIED GENERALIZED MULTIDIMENSIONAL FRACTIONAL KADOMTSEV–PETVIASHVILI EQUATION\",\"authors\":\"MINYUAN LIU, HUI XU, ZENGGUI WANG, GUIYING CHEN\",\"doi\":\"10.1142/s0218348x24500464\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we investigate the exact solutions of a modified generalized multidimensional fractional Kadomtsev–Petviashvili (KP) equation by the bifurcation method. First, the equation is converted into a planar dynamical system through fractional complex wave transformation. The phase portraits of the equation and qualitative analysis are presented under different bifurcation conditions. Then, the bounded and unbounded traveling wave solutions, including periodic, kink, anti-kink, dark-solitary, bright-solitary and breaking wave solutions, are acquired by integrating along different orbits. Finally, numerical simulations of the dynamic behaviors of the solutions obtained are graphically illustrated by choosing appropriate parameters.</p>\",\"PeriodicalId\":501262,\"journal\":{\"name\":\"Fractals\",\"volume\":\"88 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-04-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fractals\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218348x24500464\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fractals","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218348x24500464","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文采用分岔法研究了修正的广义多维分数卡多姆采夫-彼得维亚什维利(KP)方程的精确解。首先,通过分数复波变换将方程转换为平面动力系统。介绍了方程在不同分岔条件下的相位肖像和定性分析。然后,通过沿不同轨道积分,获得有界和无界行波解,包括周期波解、扭结波解、反扭结波解、暗孤波解、明孤波解和断裂波解。最后,通过选择适当的参数,对所得到的解的动态行为进行了数值模拟,并给出了图解。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
EXACT SOLUTIONS AND BIFURCATION OF A MODIFIED GENERALIZED MULTIDIMENSIONAL FRACTIONAL KADOMTSEV–PETVIASHVILI EQUATION

In this paper, we investigate the exact solutions of a modified generalized multidimensional fractional Kadomtsev–Petviashvili (KP) equation by the bifurcation method. First, the equation is converted into a planar dynamical system through fractional complex wave transformation. The phase portraits of the equation and qualitative analysis are presented under different bifurcation conditions. Then, the bounded and unbounded traveling wave solutions, including periodic, kink, anti-kink, dark-solitary, bright-solitary and breaking wave solutions, are acquired by integrating along different orbits. Finally, numerical simulations of the dynamic behaviors of the solutions obtained are graphically illustrated by choosing appropriate parameters.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信