利用 LLM 解锁电信领域知识

Sujoy Roychowdhury, Nishkarsh Jain, Sumit Soman
{"title":"利用 LLM 解锁电信领域知识","authors":"Sujoy Roychowdhury, Nishkarsh Jain, Sumit Soman","doi":"10.1109/COMSNETS59351.2024.10427044","DOIUrl":null,"url":null,"abstract":"Conversational assistants have become increasingly popular as they use Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) for domain context. In this work, we present an end-to-end solution that leverages RAG for telecom domain Question Answering (QA) on standards documents. We highlight that retrieval quality is important, along with an efficient indexing mechanism for the document embeddings. We also index images and tables for QA on standards documents. Our Telecom Knowledge Assistant is useful for handling specific queries from telecom domain experts, as well as for novice learners. The developed approach and solution are amenable to adapt for other domains as well.","PeriodicalId":518748,"journal":{"name":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"23 1","pages":"267-269"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unlocking Telecom Domain Knowledge Using LLMs\",\"authors\":\"Sujoy Roychowdhury, Nishkarsh Jain, Sumit Soman\",\"doi\":\"10.1109/COMSNETS59351.2024.10427044\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Conversational assistants have become increasingly popular as they use Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) for domain context. In this work, we present an end-to-end solution that leverages RAG for telecom domain Question Answering (QA) on standards documents. We highlight that retrieval quality is important, along with an efficient indexing mechanism for the document embeddings. We also index images and tables for QA on standards documents. Our Telecom Knowledge Assistant is useful for handling specific queries from telecom domain experts, as well as for novice learners. The developed approach and solution are amenable to adapt for other domains as well.\",\"PeriodicalId\":518748,\"journal\":{\"name\":\"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"volume\":\"23 1\",\"pages\":\"267-269\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS59351.2024.10427044\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS59351.2024.10427044","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

会话助手越来越受欢迎,因为它们使用大语言模型(LLM)和检索增强生成(RAG)来获取领域上下文。在这项工作中,我们提出了一种端到端解决方案,利用 RAG 对标准文档进行电信领域问题解答 (QA)。我们强调,检索质量以及高效的文档嵌入索引机制非常重要。我们还为图像和表格编制索引,用于标准文档的 QA。我们的电信知识助手可用于处理电信领域专家和新手学习者的特定查询。所开发的方法和解决方案也适用于其他领域。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Unlocking Telecom Domain Knowledge Using LLMs
Conversational assistants have become increasingly popular as they use Large Language Models (LLMs) and Retrieval Augmented Generation (RAG) for domain context. In this work, we present an end-to-end solution that leverages RAG for telecom domain Question Answering (QA) on standards documents. We highlight that retrieval quality is important, along with an efficient indexing mechanism for the document embeddings. We also index images and tables for QA on standards documents. Our Telecom Knowledge Assistant is useful for handling specific queries from telecom domain experts, as well as for novice learners. The developed approach and solution are amenable to adapt for other domains as well.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信