物联网网络中多类变态恶意软件检测的稳健特征集成

Tisha Chawla, Saifur Rahman, Shantanu Pal, Chandan K. Karmakar
{"title":"物联网网络中多类变态恶意软件检测的稳健特征集成","authors":"Tisha Chawla, Saifur Rahman, Shantanu Pal, Chandan K. Karmakar","doi":"10.1109/COMSNETS59351.2024.10427143","DOIUrl":null,"url":null,"abstract":"With the increase in the use of Internet of Things (IoT) services and applications, the escalating prevalence of metamorphic malware poses a significant challenge. Characterized by their ability to dynamically modify their code to evade detection, these advanced malware variants significantly compromise the security of IoT networks. This paper presents an approach for multiclass metamorphic malware detection in IoT networks, emphasizing the integration of diverse features by employing Convolutional Neural Networks (CNN) for intricate feature extraction, Principal Component Analysis (PCA) for eliminating multicollinearity between the features, and Random Forest (RF) for robust classification. Our proposed model demonstrates exceptional performance with macro-accuracy, macroprecision, macro-recall, and macro-F1 score of 97.44%, and a distinctive ROC-AUC score of 99.87%.","PeriodicalId":518748,"journal":{"name":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"16 1","pages":"412-414"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Robust Feature Integration for Multiclass Metamorphic Malware Detection in IoT Network\",\"authors\":\"Tisha Chawla, Saifur Rahman, Shantanu Pal, Chandan K. Karmakar\",\"doi\":\"10.1109/COMSNETS59351.2024.10427143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"With the increase in the use of Internet of Things (IoT) services and applications, the escalating prevalence of metamorphic malware poses a significant challenge. Characterized by their ability to dynamically modify their code to evade detection, these advanced malware variants significantly compromise the security of IoT networks. This paper presents an approach for multiclass metamorphic malware detection in IoT networks, emphasizing the integration of diverse features by employing Convolutional Neural Networks (CNN) for intricate feature extraction, Principal Component Analysis (PCA) for eliminating multicollinearity between the features, and Random Forest (RF) for robust classification. Our proposed model demonstrates exceptional performance with macro-accuracy, macroprecision, macro-recall, and macro-F1 score of 97.44%, and a distinctive ROC-AUC score of 99.87%.\",\"PeriodicalId\":518748,\"journal\":{\"name\":\"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"volume\":\"16 1\",\"pages\":\"412-414\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS59351.2024.10427143\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS59351.2024.10427143","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

随着物联网(IoT)服务和应用程序使用的增加,变种恶意软件的流行率不断攀升,构成了一项重大挑战。这些高级恶意软件变种的特点是能够动态修改代码以逃避检测,极大地损害了物联网网络的安全。本文提出了一种在物联网网络中进行多类变种恶意软件检测的方法,强调通过使用卷积神经网络(CNN)进行复杂的特征提取,使用主成分分析(PCA)消除特征之间的多重共线性,使用随机森林(RF)进行稳健分类,从而整合各种特征。我们提出的模型表现出卓越的性能,其宏观准确率、宏观精度、宏观召回率和宏观 F1 得分为 97.44%,ROC-AUC 得分为 99.87%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Robust Feature Integration for Multiclass Metamorphic Malware Detection in IoT Network
With the increase in the use of Internet of Things (IoT) services and applications, the escalating prevalence of metamorphic malware poses a significant challenge. Characterized by their ability to dynamically modify their code to evade detection, these advanced malware variants significantly compromise the security of IoT networks. This paper presents an approach for multiclass metamorphic malware detection in IoT networks, emphasizing the integration of diverse features by employing Convolutional Neural Networks (CNN) for intricate feature extraction, Principal Component Analysis (PCA) for eliminating multicollinearity between the features, and Random Forest (RF) for robust classification. Our proposed model demonstrates exceptional performance with macro-accuracy, macroprecision, macro-recall, and macro-F1 score of 97.44%, and a distinctive ROC-AUC score of 99.87%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信