建立具有选择性聚合功能的高效联盟学习框架

Anirudha Kulkarni, Abhinav Kumar, R. Shorey, Rohit Verma
{"title":"建立具有选择性聚合功能的高效联盟学习框架","authors":"Anirudha Kulkarni, Abhinav Kumar, R. Shorey, Rohit Verma","doi":"10.1109/COMSNETS59351.2024.10426966","DOIUrl":null,"url":null,"abstract":"Federated Learning shows promise for collaborative, decentralized machine learning but faces efficiency challenges, primarily network straggler-induced latency bottlenecks and the need for complex aggregation techniques. To address these issues, ongoing research explores asynchronous FL, i.e., federated learning models, including an Asynchronous Parallel Federated Learning [5] framework. This study investigates the impact of varying worker node numbers on key metrics. More nodes offer faster convergence but may increase communication overhead and straggler vulnerability. We aim to quantify how the number of worker node variations for one global aggregation can affect convergence speed, communication efficiency, model accuracy, and system robustness, optimizing asynchronous FL system configurations. This work is crucial for practical and scalable FL applications, mitigating network stragglers, data distribution, and security challenges. This work analyses Asynchronous Parallel Federated Learning and showcases a paradigm shift in the approach by selectively aggregating early arriving worker node updates with a novel parameter ‘x’, improving efficiency and reshaping FL.","PeriodicalId":518748,"journal":{"name":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","volume":"241 1-2","pages":"623-627"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards an Efficient Federated Learning Framework with Selective Aggregation\",\"authors\":\"Anirudha Kulkarni, Abhinav Kumar, R. Shorey, Rohit Verma\",\"doi\":\"10.1109/COMSNETS59351.2024.10426966\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Learning shows promise for collaborative, decentralized machine learning but faces efficiency challenges, primarily network straggler-induced latency bottlenecks and the need for complex aggregation techniques. To address these issues, ongoing research explores asynchronous FL, i.e., federated learning models, including an Asynchronous Parallel Federated Learning [5] framework. This study investigates the impact of varying worker node numbers on key metrics. More nodes offer faster convergence but may increase communication overhead and straggler vulnerability. We aim to quantify how the number of worker node variations for one global aggregation can affect convergence speed, communication efficiency, model accuracy, and system robustness, optimizing asynchronous FL system configurations. This work is crucial for practical and scalable FL applications, mitigating network stragglers, data distribution, and security challenges. This work analyses Asynchronous Parallel Federated Learning and showcases a paradigm shift in the approach by selectively aggregating early arriving worker node updates with a novel parameter ‘x’, improving efficiency and reshaping FL.\",\"PeriodicalId\":518748,\"journal\":{\"name\":\"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"volume\":\"241 1-2\",\"pages\":\"623-627\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/COMSNETS59351.2024.10426966\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 16th International Conference on COMmunication Systems & NETworkS (COMSNETS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/COMSNETS59351.2024.10426966","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

联合学习(Federated Learning)为协作式分散机器学习带来了希望,但也面临着效率方面的挑战,主要是网络杂散引起的延迟瓶颈和对复杂聚合技术的需求。为了解决这些问题,正在进行的研究探索了异步 FL,即联合学习模型,包括异步并行联合学习 [5] 框架。这项研究调查了不同工作节点数量对关键指标的影响。节点数量越多,收敛速度越快,但可能会增加通信开销和散兵游勇的脆弱性。我们旨在量化一个全局聚合的工作节点数量变化如何影响收敛速度、通信效率、模型准确性和系统鲁棒性,优化异步 FL 系统配置。这项工作对于实用的可扩展 FL 应用、缓解网络滞后、数据分布和安全挑战至关重要。这项工作分析了异步并行联合学习,并展示了该方法的范式转变,即通过新颖的参数 "x "选择性地聚合早期到达的工作节点更新,从而提高效率并重塑 FL。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards an Efficient Federated Learning Framework with Selective Aggregation
Federated Learning shows promise for collaborative, decentralized machine learning but faces efficiency challenges, primarily network straggler-induced latency bottlenecks and the need for complex aggregation techniques. To address these issues, ongoing research explores asynchronous FL, i.e., federated learning models, including an Asynchronous Parallel Federated Learning [5] framework. This study investigates the impact of varying worker node numbers on key metrics. More nodes offer faster convergence but may increase communication overhead and straggler vulnerability. We aim to quantify how the number of worker node variations for one global aggregation can affect convergence speed, communication efficiency, model accuracy, and system robustness, optimizing asynchronous FL system configurations. This work is crucial for practical and scalable FL applications, mitigating network stragglers, data distribution, and security challenges. This work analyses Asynchronous Parallel Federated Learning and showcases a paradigm shift in the approach by selectively aggregating early arriving worker node updates with a novel parameter ‘x’, improving efficiency and reshaping FL.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信