{"title":"针对联合领域泛化的多源协作梯度差异最小化技术","authors":"Yikang Wei, Yahong Han","doi":"10.48550/arXiv.2401.10272","DOIUrl":null,"url":null,"abstract":"Federated Domain Generalization aims to learn a domain-invariant model from multiple decentralized source domains for deployment on unseen target domain. Due to privacy concerns, the data from different source domains are kept isolated, which poses challenges in bridging the domain gap. To address this issue, we propose a Multi-source Collaborative Gradient Discrepancy Minimization (MCGDM) method for federated domain generalization. Specifically, we propose intra-domain gradient matching between the original images and augmented images to avoid overfitting the domain-specific information within isolated domains. Additionally, we propose inter-domain gradient matching with the collaboration of other domains, which can further reduce the domain shift across decentralized domains. Combining intra-domain and inter-domain gradient matching, our method enables the learned model to generalize well on unseen domains. Furthermore, our method can be extended to the federated domain adaptation task by fine-tuning the target model on the pseudo-labeled target domain. The extensive experiments on federated domain generalization and adaptation indicate that our method outperforms the state-of-the-art methods significantly.","PeriodicalId":518480,"journal":{"name":"AAAI Conference on Artificial Intelligence","volume":"26 2","pages":"15805-15813"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Multi-Source Collaborative Gradient Discrepancy Minimization for Federated Domain Generalization\",\"authors\":\"Yikang Wei, Yahong Han\",\"doi\":\"10.48550/arXiv.2401.10272\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Federated Domain Generalization aims to learn a domain-invariant model from multiple decentralized source domains for deployment on unseen target domain. Due to privacy concerns, the data from different source domains are kept isolated, which poses challenges in bridging the domain gap. To address this issue, we propose a Multi-source Collaborative Gradient Discrepancy Minimization (MCGDM) method for federated domain generalization. Specifically, we propose intra-domain gradient matching between the original images and augmented images to avoid overfitting the domain-specific information within isolated domains. Additionally, we propose inter-domain gradient matching with the collaboration of other domains, which can further reduce the domain shift across decentralized domains. Combining intra-domain and inter-domain gradient matching, our method enables the learned model to generalize well on unseen domains. Furthermore, our method can be extended to the federated domain adaptation task by fine-tuning the target model on the pseudo-labeled target domain. The extensive experiments on federated domain generalization and adaptation indicate that our method outperforms the state-of-the-art methods significantly.\",\"PeriodicalId\":518480,\"journal\":{\"name\":\"AAAI Conference on Artificial Intelligence\",\"volume\":\"26 2\",\"pages\":\"15805-15813\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2401.10272\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.10272","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Multi-Source Collaborative Gradient Discrepancy Minimization for Federated Domain Generalization
Federated Domain Generalization aims to learn a domain-invariant model from multiple decentralized source domains for deployment on unseen target domain. Due to privacy concerns, the data from different source domains are kept isolated, which poses challenges in bridging the domain gap. To address this issue, we propose a Multi-source Collaborative Gradient Discrepancy Minimization (MCGDM) method for federated domain generalization. Specifically, we propose intra-domain gradient matching between the original images and augmented images to avoid overfitting the domain-specific information within isolated domains. Additionally, we propose inter-domain gradient matching with the collaboration of other domains, which can further reduce the domain shift across decentralized domains. Combining intra-domain and inter-domain gradient matching, our method enables the learned model to generalize well on unseen domains. Furthermore, our method can be extended to the federated domain adaptation task by fine-tuning the target model on the pseudo-labeled target domain. The extensive experiments on federated domain generalization and adaptation indicate that our method outperforms the state-of-the-art methods significantly.