传统变换理论指导下的学习型图像压缩模型

Zhiyuan Li, Chenyang Ge, Shun Li
{"title":"传统变换理论指导下的学习型图像压缩模型","authors":"Zhiyuan Li, Chenyang Ge, Shun Li","doi":"10.1109/ICCE59016.2024.10444483","DOIUrl":null,"url":null,"abstract":"Recently, many deep image compression methods have been proposed and achieved remarkable performance. However, these methods are dedicated to optimizing the compression performance and speed at medium and high bitrates, while research on ultra low bitrates is limited. In this work, we propose a ultra low bitrates enhanced invertible encoding network guided by traditional transformation theory, experiments show that our codec outperforms existing methods in both compression and reconstruction performance. Specifically, we introduce the Block Discrete Cosine Transformation to model the sparsity of features and employ traditional Haar transformation to improve the reconstruction performance of the model without increasing the bitstream cost.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"65 3","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Traditional Transformation Theory Guided Model for Learned Image Compression\",\"authors\":\"Zhiyuan Li, Chenyang Ge, Shun Li\",\"doi\":\"10.1109/ICCE59016.2024.10444483\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Recently, many deep image compression methods have been proposed and achieved remarkable performance. However, these methods are dedicated to optimizing the compression performance and speed at medium and high bitrates, while research on ultra low bitrates is limited. In this work, we propose a ultra low bitrates enhanced invertible encoding network guided by traditional transformation theory, experiments show that our codec outperforms existing methods in both compression and reconstruction performance. Specifically, we introduce the Block Discrete Cosine Transformation to model the sparsity of features and employ traditional Haar transformation to improve the reconstruction performance of the model without increasing the bitstream cost.\",\"PeriodicalId\":518694,\"journal\":{\"name\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"65 3\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE59016.2024.10444483\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444483","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

最近,人们提出了许多深度图像压缩方法,并取得了显著的性能。然而,这些方法都致力于优化中、高比特率下的压缩性能和速度,而对超低比特率的研究还很有限。在这项工作中,我们提出了一种以传统变换理论为指导的超低比特率增强型可逆编码网络,实验表明我们的编解码器在压缩和重构性能上都优于现有方法。具体来说,我们引入了块离散余弦变换(Block Discrete Cosine Transformation)来模拟特征的稀疏性,并采用传统的哈尔变换(Haar transformation)来提高模型的重构性能,而不增加比特流成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Traditional Transformation Theory Guided Model for Learned Image Compression
Recently, many deep image compression methods have been proposed and achieved remarkable performance. However, these methods are dedicated to optimizing the compression performance and speed at medium and high bitrates, while research on ultra low bitrates is limited. In this work, we propose a ultra low bitrates enhanced invertible encoding network guided by traditional transformation theory, experiments show that our codec outperforms existing methods in both compression and reconstruction performance. Specifically, we introduce the Block Discrete Cosine Transformation to model the sparsity of features and employ traditional Haar transformation to improve the reconstruction performance of the model without increasing the bitstream cost.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信