远程无人机探测数据集

Amirreza Rouhi, Himanshu Umare, Sneh Patal, Ritik Kapoor, Namit Deshpande, Solmaz Arezoomandan, Princie Shah, David K. Han
{"title":"远程无人机探测数据集","authors":"Amirreza Rouhi, Himanshu Umare, Sneh Patal, Ritik Kapoor, Namit Deshpande, Solmaz Arezoomandan, Princie Shah, David K. Han","doi":"10.1109/ICCE59016.2024.10444135","DOIUrl":null,"url":null,"abstract":"For the safe and efficient deployment of unmanned aerial vehicles (UAVs) in complex urban landscapes, robust collision avoidance mechanisms are imperative. Although several methodologies exist for drone detection, current solutions are suboptimal for long-range detection, primarily due to the scarcity of comprehensive training datasets. In this paper, we present a novel long-range drone detection dataset, encompassing a set of different UAV types, flight patterns, and environmental conditions. Utilizing this dataset, we trained a state-of-the-art YOLO object detection algorithm, demonstrating the ability to identify drones at distances up to 60 meters with a high mean average precision (mAP). Extensive real-world tests affirm the efficacy of our approach, achieving a detection accuracy exceeding 75%. This dataset and the accompanying machine learning model contribute a significant advancement in the realm of long-range drone detection, particularly well-suited for urban deployments. For access to the complete Long-Range Drone Detection Dataset (LRDD), please visit https://research.coe.drexel.edu/ece/imaple/long-range-drone-detection-dataset/.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"67 5","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Long-Range Drone Detection Dataset\",\"authors\":\"Amirreza Rouhi, Himanshu Umare, Sneh Patal, Ritik Kapoor, Namit Deshpande, Solmaz Arezoomandan, Princie Shah, David K. Han\",\"doi\":\"10.1109/ICCE59016.2024.10444135\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For the safe and efficient deployment of unmanned aerial vehicles (UAVs) in complex urban landscapes, robust collision avoidance mechanisms are imperative. Although several methodologies exist for drone detection, current solutions are suboptimal for long-range detection, primarily due to the scarcity of comprehensive training datasets. In this paper, we present a novel long-range drone detection dataset, encompassing a set of different UAV types, flight patterns, and environmental conditions. Utilizing this dataset, we trained a state-of-the-art YOLO object detection algorithm, demonstrating the ability to identify drones at distances up to 60 meters with a high mean average precision (mAP). Extensive real-world tests affirm the efficacy of our approach, achieving a detection accuracy exceeding 75%. This dataset and the accompanying machine learning model contribute a significant advancement in the realm of long-range drone detection, particularly well-suited for urban deployments. For access to the complete Long-Range Drone Detection Dataset (LRDD), please visit https://research.coe.drexel.edu/ece/imaple/long-range-drone-detection-dataset/.\",\"PeriodicalId\":518694,\"journal\":{\"name\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"67 5\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE59016.2024.10444135\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444135","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

为了在复杂的城市景观中安全、高效地部署无人驾驶飞行器(UAV),强大的防碰撞机制势在必行。虽然有多种无人机检测方法,但目前的解决方案在远距离检测方面并不理想,主要原因是缺乏全面的训练数据集。在本文中,我们提出了一个新颖的远距离无人机检测数据集,其中包含一组不同的无人机类型、飞行模式和环境条件。利用该数据集,我们训练了一种最先进的 YOLO 物体检测算法,证明该算法能够以较高的平均精度(mAP)识别距离达 60 米的无人机。广泛的实际测试证实了我们方法的有效性,检测准确率超过 75%。该数据集和相应的机器学习模型在远距离无人机探测领域取得了重大进展,尤其适用于城市部署。如需访问完整的远程无人机探测数据集(LRDD),请访问 https://research.coe.drexel.edu/ece/imaple/long-range-drone-detection-dataset/。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Long-Range Drone Detection Dataset
For the safe and efficient deployment of unmanned aerial vehicles (UAVs) in complex urban landscapes, robust collision avoidance mechanisms are imperative. Although several methodologies exist for drone detection, current solutions are suboptimal for long-range detection, primarily due to the scarcity of comprehensive training datasets. In this paper, we present a novel long-range drone detection dataset, encompassing a set of different UAV types, flight patterns, and environmental conditions. Utilizing this dataset, we trained a state-of-the-art YOLO object detection algorithm, demonstrating the ability to identify drones at distances up to 60 meters with a high mean average precision (mAP). Extensive real-world tests affirm the efficacy of our approach, achieving a detection accuracy exceeding 75%. This dataset and the accompanying machine learning model contribute a significant advancement in the realm of long-range drone detection, particularly well-suited for urban deployments. For access to the complete Long-Range Drone Detection Dataset (LRDD), please visit https://research.coe.drexel.edu/ece/imaple/long-range-drone-detection-dataset/.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信