在物联网环境中使用 YOLO-v8 检测牛行为的监控系统

Kyungchang Jeong, Dong-Ro Kim, Jae-Heyn Ryu, Hyun-Woo Kim, Jinho Cho, Euijong Lee, Ji-Hoon Jeong
{"title":"在物联网环境中使用 YOLO-v8 检测牛行为的监控系统","authors":"Kyungchang Jeong, Dong-Ro Kim, Jae-Heyn Ryu, Hyun-Woo Kim, Jinho Cho, Euijong Lee, Ji-Hoon Jeong","doi":"10.1109/ICCE59016.2024.10444145","DOIUrl":null,"url":null,"abstract":"The decline and aging of the rural population have led to the development of smart livestock farming systems that can automatically detect animal behavior. Previous studies have primarily focused on detecting behavior during the day, cattle mounting behavior can occur at any time, both day and night. This study proposes a continuous 24-hour real-time monitoring IoT system for detecting cattle mounting behavior. This system leverages the convolutional neural network-based YOLO-v8 model to discern between typical cattle behavior and mounting actions. The experimental results demonstrate the robust performance of the integrated day and night model, ensuring accurate predictions.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"81 2","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Monitoring System for Cattle Behavior Detection using YOLO-v8 in IoT Environments\",\"authors\":\"Kyungchang Jeong, Dong-Ro Kim, Jae-Heyn Ryu, Hyun-Woo Kim, Jinho Cho, Euijong Lee, Ji-Hoon Jeong\",\"doi\":\"10.1109/ICCE59016.2024.10444145\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The decline and aging of the rural population have led to the development of smart livestock farming systems that can automatically detect animal behavior. Previous studies have primarily focused on detecting behavior during the day, cattle mounting behavior can occur at any time, both day and night. This study proposes a continuous 24-hour real-time monitoring IoT system for detecting cattle mounting behavior. This system leverages the convolutional neural network-based YOLO-v8 model to discern between typical cattle behavior and mounting actions. The experimental results demonstrate the robust performance of the integrated day and night model, ensuring accurate predictions.\",\"PeriodicalId\":518694,\"journal\":{\"name\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"81 2\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE59016.2024.10444145\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444145","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

农村人口的减少和老龄化促使人们开发能够自动检测动物行为的智能牲畜养殖系统。以往的研究主要集中在检测白天的行为,而牛的上马行为可能发生在白天和夜晚的任何时间。本研究提出了一种连续 24 小时实时监控的物联网系统,用于检测牛的上马行为。该系统利用基于卷积神经网络的 YOLO-v8 模型来分辨牛的典型行为和上马行为。实验结果表明,昼夜综合模型性能稳定,可确保准确预测。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Monitoring System for Cattle Behavior Detection using YOLO-v8 in IoT Environments
The decline and aging of the rural population have led to the development of smart livestock farming systems that can automatically detect animal behavior. Previous studies have primarily focused on detecting behavior during the day, cattle mounting behavior can occur at any time, both day and night. This study proposes a continuous 24-hour real-time monitoring IoT system for detecting cattle mounting behavior. This system leverages the convolutional neural network-based YOLO-v8 model to discern between typical cattle behavior and mounting actions. The experimental results demonstrate the robust performance of the integrated day and night model, ensuring accurate predictions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信