增强统计保真度的弱光和正常光图像对生成策略

Cheuk-Yiu Chan, Wan-Chi Siu, Yuk-Hee Chan, H. A. Chan
{"title":"增强统计保真度的弱光和正常光图像对生成策略","authors":"Cheuk-Yiu Chan, Wan-Chi Siu, Yuk-Hee Chan, H. A. Chan","doi":"10.1109/ICCE59016.2024.10444437","DOIUrl":null,"url":null,"abstract":"Low light image enhancement remains challenging due to limited availability of real low/normal light image pairs for training. Simple image simulation techniques used for data augmentation fail to accurately model noise and distortions present in real low light photos. In this work, we propose N2LDiff, a novel generative model leveraging diffusion processes to synthesize realistic low light images from normal light counterparts. Our model leverages the noise modeling capabilities of diffusion processes to generate low light images with accurate noise, blurring, and color distortions. We make the following key contributions: (1) We develop a novel N2LDiff model that can generate varied low light images from the same normal light input via diffusion processes. (2) We introduce a new benchmark for low light image synthesis using existing datasets. (3) Leveraging N2LDiff, we construct a large-scale low light dataset. Our generated data will facilitate training and evaluation of deep learning models for low light enhancement tasks.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"70 10","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generative Strategy for Low and Normal Light Image Pairs with Enhanced Statistical Fidelity\",\"authors\":\"Cheuk-Yiu Chan, Wan-Chi Siu, Yuk-Hee Chan, H. A. Chan\",\"doi\":\"10.1109/ICCE59016.2024.10444437\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low light image enhancement remains challenging due to limited availability of real low/normal light image pairs for training. Simple image simulation techniques used for data augmentation fail to accurately model noise and distortions present in real low light photos. In this work, we propose N2LDiff, a novel generative model leveraging diffusion processes to synthesize realistic low light images from normal light counterparts. Our model leverages the noise modeling capabilities of diffusion processes to generate low light images with accurate noise, blurring, and color distortions. We make the following key contributions: (1) We develop a novel N2LDiff model that can generate varied low light images from the same normal light input via diffusion processes. (2) We introduce a new benchmark for low light image synthesis using existing datasets. (3) Leveraging N2LDiff, we construct a large-scale low light dataset. Our generated data will facilitate training and evaluation of deep learning models for low light enhancement tasks.\",\"PeriodicalId\":518694,\"journal\":{\"name\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"70 10\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE59016.2024.10444437\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444437","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于用于训练的真实弱光/正常光图像对有限,弱光图像增强仍然具有挑战性。用于数据增强的简单图像模拟技术无法准确模拟真实弱光照片中存在的噪声和失真。在这项工作中,我们提出了一种新颖的生成模型 N2LDiff,它利用扩散过程从正常光线对应图像中合成逼真的弱光图像。我们的模型利用扩散过程的噪声建模能力,生成具有准确噪声、模糊和色彩失真的弱光图像。我们的主要贡献如下:(1) 我们开发了一个新颖的 N2LDiff 模型,该模型可通过扩散过程从相同的正常光输入生成不同的弱光图像。(2) 我们利用现有数据集为弱光图像合成引入了一个新的基准。(3) 利用 N2LDiff,我们构建了一个大规模弱光数据集。我们生成的数据将有助于训练和评估用于弱光增强任务的深度学习模型。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generative Strategy for Low and Normal Light Image Pairs with Enhanced Statistical Fidelity
Low light image enhancement remains challenging due to limited availability of real low/normal light image pairs for training. Simple image simulation techniques used for data augmentation fail to accurately model noise and distortions present in real low light photos. In this work, we propose N2LDiff, a novel generative model leveraging diffusion processes to synthesize realistic low light images from normal light counterparts. Our model leverages the noise modeling capabilities of diffusion processes to generate low light images with accurate noise, blurring, and color distortions. We make the following key contributions: (1) We develop a novel N2LDiff model that can generate varied low light images from the same normal light input via diffusion processes. (2) We introduce a new benchmark for low light image synthesis using existing datasets. (3) Leveraging N2LDiff, we construct a large-scale low light dataset. Our generated data will facilitate training and evaluation of deep learning models for low light enhancement tasks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信