基于 BERT 的管理层销售预测误差预测模型--利用日本公司的收益会议记录

Siya Bao, Yiqun Jin
{"title":"基于 BERT 的管理层销售预测误差预测模型--利用日本公司的收益会议记录","authors":"Siya Bao, Yiqun Jin","doi":"10.1109/CCNC51664.2024.10454661","DOIUrl":null,"url":null,"abstract":"Earnings meeting transcripts contain valuable information relevant to investment decision-making, and reflect firm's future performance such as sales revenue forecasts. In this paper, we proposed a BERT-based model to predict whether the actual sales beat the forecast using long-text Japanese EM transcripts. According to the experiment results, our proposed method outperforms the five conventional methods with an improvement ≥ 4% in accuracy.","PeriodicalId":518411,"journal":{"name":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","volume":"13 7","pages":"1066-1067"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BERT-Based Prediction Model of Management Sales Forecast Error Using Japanese Firms' Earnings Meeting Transcripts\",\"authors\":\"Siya Bao, Yiqun Jin\",\"doi\":\"10.1109/CCNC51664.2024.10454661\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Earnings meeting transcripts contain valuable information relevant to investment decision-making, and reflect firm's future performance such as sales revenue forecasts. In this paper, we proposed a BERT-based model to predict whether the actual sales beat the forecast using long-text Japanese EM transcripts. According to the experiment results, our proposed method outperforms the five conventional methods with an improvement ≥ 4% in accuracy.\",\"PeriodicalId\":518411,\"journal\":{\"name\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"volume\":\"13 7\",\"pages\":\"1066-1067\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC51664.2024.10454661\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 21st Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC51664.2024.10454661","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

收益会议记录包含与投资决策相关的宝贵信息,反映了公司的未来业绩,如销售收入预测。在本文中,我们提出了一种基于 BERT 的模型,利用日语 EM 长文本记录来预测实际销售额是否超过预测值。实验结果表明,我们提出的方法优于五种传统方法,准确率提高了 ≥ 4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
BERT-Based Prediction Model of Management Sales Forecast Error Using Japanese Firms' Earnings Meeting Transcripts
Earnings meeting transcripts contain valuable information relevant to investment decision-making, and reflect firm's future performance such as sales revenue forecasts. In this paper, we proposed a BERT-based model to predict whether the actual sales beat the forecast using long-text Japanese EM transcripts. According to the experiment results, our proposed method outperforms the five conventional methods with an improvement ≥ 4% in accuracy.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信