M. Alkhatib, M. McCormick, L. Williams, A. Leon, L. Camerano, K. Al, V. Devabhaktuni, N. Kaabouch, Discriminative Svm, LR Regularization
{"title":"通过多输出多类别机器学习建模对以无人机为目标的干扰攻击进行分类和来源位置指示","authors":"M. Alkhatib, M. McCormick, L. Williams, A. Leon, L. Camerano, K. Al, V. Devabhaktuni, N. Kaabouch, Discriminative Svm, LR Regularization","doi":"10.1109/ICCE59016.2024.10444388","DOIUrl":null,"url":null,"abstract":"This paper introduces machine learning (ML) as a solution for the detection and range localization of jamming attacks targeting the global positioning system (GPS) technology, with applications to unmanned aerial vehicles (UAVs). Different multi-output multiclass ML models are trained with GPS-specific sample datasets obtained from exhaustive feature extraction and data collection routines that followed a set of realistic experimentations of attack scenarios. The resulting models enable the classification of four attack types (i.e., barrage, single-tone, successive-pulse, protocol-aware), the jamming direction, and the distance from the jamming source by yielding a detection rate (DR), misdetection rate (MDR), false alarm rate (FAR), and F-score (FS) of 98.9%, 1.39%, 0.28%, and 0.989, respectively.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"14 1","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Classification and Source Location Indication of Jamming Attacks Targeting UAVs via Multi-output Multiclass Machine Learning Modeling\",\"authors\":\"M. Alkhatib, M. McCormick, L. Williams, A. Leon, L. Camerano, K. Al, V. Devabhaktuni, N. Kaabouch, Discriminative Svm, LR Regularization\",\"doi\":\"10.1109/ICCE59016.2024.10444388\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper introduces machine learning (ML) as a solution for the detection and range localization of jamming attacks targeting the global positioning system (GPS) technology, with applications to unmanned aerial vehicles (UAVs). Different multi-output multiclass ML models are trained with GPS-specific sample datasets obtained from exhaustive feature extraction and data collection routines that followed a set of realistic experimentations of attack scenarios. The resulting models enable the classification of four attack types (i.e., barrage, single-tone, successive-pulse, protocol-aware), the jamming direction, and the distance from the jamming source by yielding a detection rate (DR), misdetection rate (MDR), false alarm rate (FAR), and F-score (FS) of 98.9%, 1.39%, 0.28%, and 0.989, respectively.\",\"PeriodicalId\":518694,\"journal\":{\"name\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"14 1\",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE59016.2024.10444388\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444388","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
本文介绍了机器学习(ML)作为针对全球定位系统(GPS)技术的干扰攻击的检测和范围定位解决方案,并将其应用于无人驾驶飞行器(UAV)。不同的多输出多分类 ML 模型是利用 GPS 特定的样本数据集进行训练的,这些样本数据集是通过详尽的特征提取和数据收集程序获得的,这些程序遵循了一组真实的攻击场景实验。由此产生的模型能够对四种攻击类型(即拦截、单音、连续脉冲、协议感知)、干扰方向和干扰源距离进行分类,检测率 (DR)、误检测率 (MDR)、误报率 (FAR) 和 F 分数 (FS) 分别为 98.9%、1.39%、0.28% 和 0.989。
Classification and Source Location Indication of Jamming Attacks Targeting UAVs via Multi-output Multiclass Machine Learning Modeling
This paper introduces machine learning (ML) as a solution for the detection and range localization of jamming attacks targeting the global positioning system (GPS) technology, with applications to unmanned aerial vehicles (UAVs). Different multi-output multiclass ML models are trained with GPS-specific sample datasets obtained from exhaustive feature extraction and data collection routines that followed a set of realistic experimentations of attack scenarios. The resulting models enable the classification of four attack types (i.e., barrage, single-tone, successive-pulse, protocol-aware), the jamming direction, and the distance from the jamming source by yielding a detection rate (DR), misdetection rate (MDR), false alarm rate (FAR), and F-score (FS) of 98.9%, 1.39%, 0.28%, and 0.989, respectively.