在脑电图测量的压缩传感框架中利用以前获得的 BSBL 算法参数

Takuya Miyata, Daisuke Kanemoto, Tetsuya Hirose
{"title":"在脑电图测量的压缩传感框架中利用以前获得的 BSBL 算法参数","authors":"Takuya Miyata, Daisuke Kanemoto, Tetsuya Hirose","doi":"10.1109/ICCE59016.2024.10444485","DOIUrl":null,"url":null,"abstract":"Compressed sensing (CS) has garnered significant attention for its potential to minimize power consumption in electroencephalogram (EEG) measurement devices. However, CS often requires substantial computational time for signal reconstruction. In this study, we introduce a novel approach aimed at reducing the reconstruction time in CS. We achieve this by reusing parameters obtained during the previous reconstruction as initial parameters for subsequent reconstruction processes. This method accelerates signal reconstruction without compromising accuracy. In Python3 simulations, our approach reduced computation time by a factor of 1.7. These findings provide valuable insights for designing low-power CS-based wireless EEG measurement systems.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"16 3","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilizing Previously Acquired BSBL Algorithm Parameters in the Compressed Sensing Framework for EEG Measurements\",\"authors\":\"Takuya Miyata, Daisuke Kanemoto, Tetsuya Hirose\",\"doi\":\"10.1109/ICCE59016.2024.10444485\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Compressed sensing (CS) has garnered significant attention for its potential to minimize power consumption in electroencephalogram (EEG) measurement devices. However, CS often requires substantial computational time for signal reconstruction. In this study, we introduce a novel approach aimed at reducing the reconstruction time in CS. We achieve this by reusing parameters obtained during the previous reconstruction as initial parameters for subsequent reconstruction processes. This method accelerates signal reconstruction without compromising accuracy. In Python3 simulations, our approach reduced computation time by a factor of 1.7. These findings provide valuable insights for designing low-power CS-based wireless EEG measurement systems.\",\"PeriodicalId\":518694,\"journal\":{\"name\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"16 3\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE59016.2024.10444485\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444485","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

压缩传感(CS)因其可最大限度降低脑电图(EEG)测量设备的功耗而备受关注。然而,CS 通常需要大量的计算时间来重建信号。在本研究中,我们介绍了一种旨在减少 CS 重建时间的新方法。我们通过重复使用上一次重建过程中获得的参数作为后续重建过程的初始参数来实现这一目标。这种方法在不影响精度的情况下加快了信号重建速度。在 Python3 仿真中,我们的方法将计算时间缩短了 1.7 倍。这些发现为设计基于 CS 的低功耗无线脑电图测量系统提供了宝贵的启示。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Utilizing Previously Acquired BSBL Algorithm Parameters in the Compressed Sensing Framework for EEG Measurements
Compressed sensing (CS) has garnered significant attention for its potential to minimize power consumption in electroencephalogram (EEG) measurement devices. However, CS often requires substantial computational time for signal reconstruction. In this study, we introduce a novel approach aimed at reducing the reconstruction time in CS. We achieve this by reusing parameters obtained during the previous reconstruction as initial parameters for subsequent reconstruction processes. This method accelerates signal reconstruction without compromising accuracy. In Python3 simulations, our approach reduced computation time by a factor of 1.7. These findings provide valuable insights for designing low-power CS-based wireless EEG measurement systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信