帮助基于锚点的跟踪器学习智能城市监控的再识别功能的策略

Xiu-Zhi Chen, Mu-Chuan Li, Yen-Lin Chen
{"title":"帮助基于锚点的跟踪器学习智能城市监控的再识别功能的策略","authors":"Xiu-Zhi Chen, Mu-Chuan Li, Yen-Lin Chen","doi":"10.1109/ICCE59016.2024.10444455","DOIUrl":null,"url":null,"abstract":"Re-identification has become a crucial issue in computer vision today as it allows for tracking objects in both continuous and discontinuous scenarios. Despite achieving perfect detection results, anchor-based trackers encountered difficulties in effectively learning re-identification features, due to various issues. This research proposes strategies aimed at improving the capability of anchor-based trackers to learn high-quality re-identification (re-ID) features. The model developed through our strategies can extract more distinct features and achieve almost 0.57 Multiple Object Tracking Accuracy (MOTA) on MOT20, even under a limited training dataset. This result indicates that our proposed strategies hold potential for improving the performance of anchor-based trackers.","PeriodicalId":518694,"journal":{"name":"2024 IEEE International Conference on Consumer Electronics (ICCE)","volume":"109 9","pages":"1-2"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Strategies for Helping Anchor-Based Trackers Learn re-ID Features for Smart City Surveillance\",\"authors\":\"Xiu-Zhi Chen, Mu-Chuan Li, Yen-Lin Chen\",\"doi\":\"10.1109/ICCE59016.2024.10444455\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Re-identification has become a crucial issue in computer vision today as it allows for tracking objects in both continuous and discontinuous scenarios. Despite achieving perfect detection results, anchor-based trackers encountered difficulties in effectively learning re-identification features, due to various issues. This research proposes strategies aimed at improving the capability of anchor-based trackers to learn high-quality re-identification (re-ID) features. The model developed through our strategies can extract more distinct features and achieve almost 0.57 Multiple Object Tracking Accuracy (MOTA) on MOT20, even under a limited training dataset. This result indicates that our proposed strategies hold potential for improving the performance of anchor-based trackers.\",\"PeriodicalId\":518694,\"journal\":{\"name\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"volume\":\"109 9\",\"pages\":\"1-2\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE International Conference on Consumer Electronics (ICCE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICCE59016.2024.10444455\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Consumer Electronics (ICCE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICCE59016.2024.10444455","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

重新识别已成为当今计算机视觉领域的一个关键问题,因为它可以在连续和不连续的场景中跟踪物体。基于锚点的跟踪器虽然能获得完美的检测结果,但由于各种问题,在有效学习再识别特征方面遇到了困难。本研究提出了一些策略,旨在提高基于锚点的跟踪器学习高质量再识别(re-ID)特征的能力。通过我们的策略开发的模型可以提取更多不同的特征,即使在有限的训练数据集下,也能在 MOT20 上达到近 0.57 的多目标跟踪精度(MOTA)。这一结果表明,我们提出的策略具有提高基于锚点的跟踪器性能的潜力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Strategies for Helping Anchor-Based Trackers Learn re-ID Features for Smart City Surveillance
Re-identification has become a crucial issue in computer vision today as it allows for tracking objects in both continuous and discontinuous scenarios. Despite achieving perfect detection results, anchor-based trackers encountered difficulties in effectively learning re-identification features, due to various issues. This research proposes strategies aimed at improving the capability of anchor-based trackers to learn high-quality re-identification (re-ID) features. The model developed through our strategies can extract more distinct features and achieve almost 0.57 Multiple Object Tracking Accuracy (MOTA) on MOT20, even under a limited training dataset. This result indicates that our proposed strategies hold potential for improving the performance of anchor-based trackers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信