实现 360 度视频的高效视觉注意力预测

Herman Prawiro, Tse-Yu Pan, Chun-Kai Yang, Chih-Tsun Huang, Min-Chun Hu
{"title":"实现 360 度视频的高效视觉注意力预测","authors":"Herman Prawiro, Tse-Yu Pan, Chun-Kai Yang, Chih-Tsun Huang, Min-Chun Hu","doi":"10.1109/AIxVR59861.2024.00014","DOIUrl":null,"url":null,"abstract":"Visual attention prediction refers to the ability to predict the most visually important or attention-grabbing areas in a scene, and emphasize them to create an engaging and realistic experience for the user. These technologies require real-time processing of high-quality visual content to maintain user engagement and immersion. As such, it is necessary to use lightweight models that can predict the most important regions of a scene without incurring large computational cost. The contribution of this work is the development and evaluation of a lightweight model for visual attention prediction, which serves as a baseline on public datasets. We study various model design choices and their effects on the performance and efficiency. We also study the effect of a model compression technique, namely self-distillation.","PeriodicalId":518749,"journal":{"name":"2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR)","volume":"135 1","pages":"50-59"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Efficient Visual Attention Prediction for 360 Degree Videos\",\"authors\":\"Herman Prawiro, Tse-Yu Pan, Chun-Kai Yang, Chih-Tsun Huang, Min-Chun Hu\",\"doi\":\"10.1109/AIxVR59861.2024.00014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Visual attention prediction refers to the ability to predict the most visually important or attention-grabbing areas in a scene, and emphasize them to create an engaging and realistic experience for the user. These technologies require real-time processing of high-quality visual content to maintain user engagement and immersion. As such, it is necessary to use lightweight models that can predict the most important regions of a scene without incurring large computational cost. The contribution of this work is the development and evaluation of a lightweight model for visual attention prediction, which serves as a baseline on public datasets. We study various model design choices and their effects on the performance and efficiency. We also study the effect of a model compression technique, namely self-distillation.\",\"PeriodicalId\":518749,\"journal\":{\"name\":\"2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR)\",\"volume\":\"135 1\",\"pages\":\"50-59\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIxVR59861.2024.00014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE International Conference on Artificial Intelligence and eXtended and Virtual Reality (AIxVR)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIxVR59861.2024.00014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

视觉注意力预测是指预测场景中视觉上最重要或最吸引注意力的区域,并强调这些区域,从而为用户创造引人入胜的逼真体验的能力。这些技术需要实时处理高质量的视觉内容,以保持用户的参与度和沉浸感。因此,有必要使用轻量级模型,既能预测场景中最重要的区域,又不会产生大量计算成本。这项工作的贡献在于开发和评估了一个用于视觉注意力预测的轻量级模型,并将其作为公共数据集的基线。我们研究了各种模型设计选择及其对性能和效率的影响。我们还研究了一种模型压缩技术(即自蒸馏)的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Efficient Visual Attention Prediction for 360 Degree Videos
Visual attention prediction refers to the ability to predict the most visually important or attention-grabbing areas in a scene, and emphasize them to create an engaging and realistic experience for the user. These technologies require real-time processing of high-quality visual content to maintain user engagement and immersion. As such, it is necessary to use lightweight models that can predict the most important regions of a scene without incurring large computational cost. The contribution of this work is the development and evaluation of a lightweight model for visual attention prediction, which serves as a baseline on public datasets. We study various model design choices and their effects on the performance and efficiency. We also study the effect of a model compression technique, namely self-distillation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信