JustQ:自动部署公平准确的量子神经网络

Ruhan Wang, Fahiz Baba-Yara, Fan Chen
{"title":"JustQ:自动部署公平准确的量子神经网络","authors":"Ruhan Wang, Fahiz Baba-Yara, Fan Chen","doi":"10.1109/ASP-DAC58780.2024.10473829","DOIUrl":null,"url":null,"abstract":"Despite the success of Quantum Neural Networks (QNNs) in decision-making systems, their fairness remains unexplored, as the focus primarily lies on accuracy. This work conducts a design space exploration, unveiling QNN unfairness, and highlighting the significant influence of QNN deployment and quantum noise on accuracy and fairness. To effectively navigate the vast QNN deployment design space, we propose JustQ, a framework for deploying fair and accurate QNNs on NISQ computers. It includes a complete NISQ error model, reinforcement learning-based deployment, and a flexible optimization objective incorporating both fairness and accuracy. Experimental results show JustQ outperforms previous methods, achieving superior accuracy and fairness. This work pioneers fair QNN design on NISQ computers, paving the way for future investigations.","PeriodicalId":518586,"journal":{"name":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"168 1","pages":"121-126"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"JustQ: Automated Deployment of Fair and Accurate Quantum Neural Networks\",\"authors\":\"Ruhan Wang, Fahiz Baba-Yara, Fan Chen\",\"doi\":\"10.1109/ASP-DAC58780.2024.10473829\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Despite the success of Quantum Neural Networks (QNNs) in decision-making systems, their fairness remains unexplored, as the focus primarily lies on accuracy. This work conducts a design space exploration, unveiling QNN unfairness, and highlighting the significant influence of QNN deployment and quantum noise on accuracy and fairness. To effectively navigate the vast QNN deployment design space, we propose JustQ, a framework for deploying fair and accurate QNNs on NISQ computers. It includes a complete NISQ error model, reinforcement learning-based deployment, and a flexible optimization objective incorporating both fairness and accuracy. Experimental results show JustQ outperforms previous methods, achieving superior accuracy and fairness. This work pioneers fair QNN design on NISQ computers, paving the way for future investigations.\",\"PeriodicalId\":518586,\"journal\":{\"name\":\"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"168 1\",\"pages\":\"121-126\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC58780.2024.10473829\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC58780.2024.10473829","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

尽管量子神经网络(QNN)在决策系统中取得了成功,但其公平性仍未得到探讨,因为人们主要关注的是准确性。这项研究对设计空间进行了探索,揭示了量子神经网络的不公平之处,并强调了量子神经网络部署和量子噪声对准确性和公平性的重要影响。为了有效驾驭广阔的 QNN 部署设计空间,我们提出了在 NISQ 计算机上部署公平准确的 QNN 的框架 JustQ。它包括一个完整的 NISQ 误差模型、基于强化学习的部署和一个灵活的优化目标,其中包含公平性和准确性。实验结果表明,JustQ 优于之前的方法,实现了卓越的准确性和公平性。这项工作开创了在 NISQ 计算机上进行公平 QNN 设计的先河,为未来的研究铺平了道路。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
JustQ: Automated Deployment of Fair and Accurate Quantum Neural Networks
Despite the success of Quantum Neural Networks (QNNs) in decision-making systems, their fairness remains unexplored, as the focus primarily lies on accuracy. This work conducts a design space exploration, unveiling QNN unfairness, and highlighting the significant influence of QNN deployment and quantum noise on accuracy and fairness. To effectively navigate the vast QNN deployment design space, we propose JustQ, a framework for deploying fair and accurate QNNs on NISQ computers. It includes a complete NISQ error model, reinforcement learning-based deployment, and a flexible optimization objective incorporating both fairness and accuracy. Experimental results show JustQ outperforms previous methods, achieving superior accuracy and fairness. This work pioneers fair QNN design on NISQ computers, paving the way for future investigations.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信