革新 MetroPT 数据集中的故障预测:通过创新数据提炼增强诊断和高效故障预测能力

Osamah N. Neamah, R. Bayir
{"title":"革新 MetroPT 数据集中的故障预测:通过创新数据提炼增强诊断和高效故障预测能力","authors":"Osamah N. Neamah, R. Bayir","doi":"10.1109/ICPC2T60072.2024.10475088","DOIUrl":null,"url":null,"abstract":"This scientific paper presents groundbreaking advancements in Predictive Maintenance (PdM) within Industry 4.0, employing cutting-edge machine learning classification algorithms for fault prediction and diagnosis in Air Production Unit (APU) systems like MetroPT and MetroPT -3. This research uses data-driven methodologies to optimize feature extraction techniques to enhance fault prediction and improve diagnostic accuracy. A robust and versatile model emerges through comprehensive testing, displaying exceptional potential in fault prediction and diagnosis for complex systems. The paper highlights the significance of enhanced analytical techniques, such as cross-validation, ensuring the reliability and robustness of the model, contributing to refined and accurate fault prediction and diagnosis, all without succumbing to overfitting. This work significantly advances the application of machine learning in predicting malignancy within Industry 4.0, showcasing the promise of these methodologies in fault prediction and diagnosis for intricate systems.","PeriodicalId":518382,"journal":{"name":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","volume":"192 1","pages":"310-315"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Revolutionizing Fault Prediction in MetroPT Datasets: Enhanced Diagnosis and Efficient Failure Prediction through Innovative Data Refinement\",\"authors\":\"Osamah N. Neamah, R. Bayir\",\"doi\":\"10.1109/ICPC2T60072.2024.10475088\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This scientific paper presents groundbreaking advancements in Predictive Maintenance (PdM) within Industry 4.0, employing cutting-edge machine learning classification algorithms for fault prediction and diagnosis in Air Production Unit (APU) systems like MetroPT and MetroPT -3. This research uses data-driven methodologies to optimize feature extraction techniques to enhance fault prediction and improve diagnostic accuracy. A robust and versatile model emerges through comprehensive testing, displaying exceptional potential in fault prediction and diagnosis for complex systems. The paper highlights the significance of enhanced analytical techniques, such as cross-validation, ensuring the reliability and robustness of the model, contributing to refined and accurate fault prediction and diagnosis, all without succumbing to overfitting. This work significantly advances the application of machine learning in predicting malignancy within Industry 4.0, showcasing the promise of these methodologies in fault prediction and diagnosis for intricate systems.\",\"PeriodicalId\":518382,\"journal\":{\"name\":\"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"volume\":\"192 1\",\"pages\":\"310-315\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPC2T60072.2024.10475088\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPC2T60072.2024.10475088","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本科学论文介绍了工业 4.0 中预测性维护(PdM)的突破性进展,采用了尖端的机器学习分类算法,用于 MetroPT 和 MetroPT -3 等空气生产单元(APU)系统的故障预测和诊断。 该研究采用数据驱动方法优化特征提取技术,以加强故障预测和提高诊断准确性。通过综合测试,建立了一个稳健、多用途的模型,在复杂系统的故障预测和诊断方面显示出非凡的潜力。论文强调了交叉验证等增强型分析技术的重要意义,这些技术确保了模型的可靠性和稳健性,有助于实现精细、准确的故障预测和诊断,同时不会出现过度拟合的情况。这项工作极大地推动了机器学习在工业 4.0 恶性肿瘤预测中的应用,展示了这些方法在复杂系统故障预测和诊断中的前景。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Revolutionizing Fault Prediction in MetroPT Datasets: Enhanced Diagnosis and Efficient Failure Prediction through Innovative Data Refinement
This scientific paper presents groundbreaking advancements in Predictive Maintenance (PdM) within Industry 4.0, employing cutting-edge machine learning classification algorithms for fault prediction and diagnosis in Air Production Unit (APU) systems like MetroPT and MetroPT -3. This research uses data-driven methodologies to optimize feature extraction techniques to enhance fault prediction and improve diagnostic accuracy. A robust and versatile model emerges through comprehensive testing, displaying exceptional potential in fault prediction and diagnosis for complex systems. The paper highlights the significance of enhanced analytical techniques, such as cross-validation, ensuring the reliability and robustness of the model, contributing to refined and accurate fault prediction and diagnosis, all without succumbing to overfitting. This work significantly advances the application of machine learning in predicting malignancy within Industry 4.0, showcasing the promise of these methodologies in fault prediction and diagnosis for intricate systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信