Md Ashraful Alam, Meharajul Kabir, Mayur Basu, Ahmed Saber
{"title":"增强电动汽车站的电压稳定性:利用智能太阳能逆变器的最佳机制","authors":"Md Ashraful Alam, Meharajul Kabir, Mayur Basu, Ahmed Saber","doi":"10.1109/icpc2t60072.2024.10474694","DOIUrl":null,"url":null,"abstract":"The rapid growth of Electric Vehicle (EV) charging stations has raised concerns about their impact on grid stability. This paper presents a study on integrating PV Systems with smart inverters in EV charging stations to enhance grid stability and energy efficiency. Two scenarios are analyzed: one without smart inverters and one with their integration. In the absence of smart inverters, charging events are poorly aligned with energy supply, resulting in voltage fluctuations, grid instability, and higher operational costs. However, the introduction of smart inverters significantly improves the situation. It optimizes charging operations, reduces energy waste, enhances grid stability, and minimizes voltage fluctuations. The proposed system's model and mechanism are comprehensively analyzed using the ETAP platform. This research underscores the vital role of smart inverters in promoting eco-friendly charging and improving overall grid stability in the context of EV charging stations.","PeriodicalId":518382,"journal":{"name":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","volume":"193 4","pages":"805-809"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Voltage Stability Enhancement for EV Stations: An Optimal Mechanism Utilizing a Smart Solar Inverter\",\"authors\":\"Md Ashraful Alam, Meharajul Kabir, Mayur Basu, Ahmed Saber\",\"doi\":\"10.1109/icpc2t60072.2024.10474694\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The rapid growth of Electric Vehicle (EV) charging stations has raised concerns about their impact on grid stability. This paper presents a study on integrating PV Systems with smart inverters in EV charging stations to enhance grid stability and energy efficiency. Two scenarios are analyzed: one without smart inverters and one with their integration. In the absence of smart inverters, charging events are poorly aligned with energy supply, resulting in voltage fluctuations, grid instability, and higher operational costs. However, the introduction of smart inverters significantly improves the situation. It optimizes charging operations, reduces energy waste, enhances grid stability, and minimizes voltage fluctuations. The proposed system's model and mechanism are comprehensively analyzed using the ETAP platform. This research underscores the vital role of smart inverters in promoting eco-friendly charging and improving overall grid stability in the context of EV charging stations.\",\"PeriodicalId\":518382,\"journal\":{\"name\":\"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"volume\":\"193 4\",\"pages\":\"805-809\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/icpc2t60072.2024.10474694\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Third International Conference on Power, Control and Computing Technologies (ICPC2T)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/icpc2t60072.2024.10474694","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Voltage Stability Enhancement for EV Stations: An Optimal Mechanism Utilizing a Smart Solar Inverter
The rapid growth of Electric Vehicle (EV) charging stations has raised concerns about their impact on grid stability. This paper presents a study on integrating PV Systems with smart inverters in EV charging stations to enhance grid stability and energy efficiency. Two scenarios are analyzed: one without smart inverters and one with their integration. In the absence of smart inverters, charging events are poorly aligned with energy supply, resulting in voltage fluctuations, grid instability, and higher operational costs. However, the introduction of smart inverters significantly improves the situation. It optimizes charging operations, reduces energy waste, enhances grid stability, and minimizes voltage fluctuations. The proposed system's model and mechanism are comprehensively analyzed using the ETAP platform. This research underscores the vital role of smart inverters in promoting eco-friendly charging and improving overall grid stability in the context of EV charging stations.