模拟/射频电路的高效转移学习辅助全局优化方案

Zhikai Wang, Jingbo Zhou, Xiaosen Liu, Yan Wang
{"title":"模拟/射频电路的高效转移学习辅助全局优化方案","authors":"Zhikai Wang, Jingbo Zhou, Xiaosen Liu, Yan Wang","doi":"10.1109/ASP-DAC58780.2024.10473798","DOIUrl":null,"url":null,"abstract":"Online surrogate model-assisted evolution algorithms (SAEAs) are very efficient for analog/RF circuit optimization. To improve modeling accuracy/sizing results, we propose an efficient transfer learning-assisted global optimization (TLAGO) scheme that can transfer useful knowledge between neural networks to improve modeling accuracy in SAEAs. The novelty mainly relies on a novel transfer learning scheme, including a modeling strategy and novel adaptive transfer learning network, for high-accuracy modeling, and greedy strategy for balancing exploration and exploitation. With lower optimization time, TLAGO can have a faster rate of convergence and more than 8% better performances than GASPAD.","PeriodicalId":518586,"journal":{"name":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","volume":"35 7-8","pages":"417-422"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-22","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Efficient Transfer Learning Assisted Global Optimization Scheme for Analog/RF Circuits\",\"authors\":\"Zhikai Wang, Jingbo Zhou, Xiaosen Liu, Yan Wang\",\"doi\":\"10.1109/ASP-DAC58780.2024.10473798\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Online surrogate model-assisted evolution algorithms (SAEAs) are very efficient for analog/RF circuit optimization. To improve modeling accuracy/sizing results, we propose an efficient transfer learning-assisted global optimization (TLAGO) scheme that can transfer useful knowledge between neural networks to improve modeling accuracy in SAEAs. The novelty mainly relies on a novel transfer learning scheme, including a modeling strategy and novel adaptive transfer learning network, for high-accuracy modeling, and greedy strategy for balancing exploration and exploitation. With lower optimization time, TLAGO can have a faster rate of convergence and more than 8% better performances than GASPAD.\",\"PeriodicalId\":518586,\"journal\":{\"name\":\"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"volume\":\"35 7-8\",\"pages\":\"417-422\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-22\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ASP-DAC58780.2024.10473798\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ASP-DAC58780.2024.10473798","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在线代用模型辅助进化算法(SAEA)对于模拟/射频电路优化非常有效。为了提高建模精度/大小结果,我们提出了一种高效的迁移学习辅助全局优化(TLAGO)方案,它可以在神经网络之间迁移有用的知识,从而提高 SAEA 的建模精度。其新颖性主要依赖于一种新颖的迁移学习方案,包括用于高精度建模的建模策略和新颖的自适应迁移学习网络,以及用于平衡探索和利用的贪婪策略。TLAGO 优化时间更短,收敛速度更快,性能比 GASPAD 高 8%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Efficient Transfer Learning Assisted Global Optimization Scheme for Analog/RF Circuits
Online surrogate model-assisted evolution algorithms (SAEAs) are very efficient for analog/RF circuit optimization. To improve modeling accuracy/sizing results, we propose an efficient transfer learning-assisted global optimization (TLAGO) scheme that can transfer useful knowledge between neural networks to improve modeling accuracy in SAEAs. The novelty mainly relies on a novel transfer learning scheme, including a modeling strategy and novel adaptive transfer learning network, for high-accuracy modeling, and greedy strategy for balancing exploration and exploitation. With lower optimization time, TLAGO can have a faster rate of convergence and more than 8% better performances than GASPAD.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信