{"title":"GPU 架构上 BLAS 库的定量性能分析","authors":"Isil Öz","doi":"10.21205/deufmd.2024267606","DOIUrl":null,"url":null,"abstract":"Basic Linear Algebra Subprograms (BLAS) are a set of linear algebra routines commonly used by machine learning applications and scientific computing. BLAS libraries with optimized implementations of BLAS routines offer high performance by exploiting parallel execution units in target computing systems. With massively large number of cores, graphics processing units (GPUs) exhibit high performance for computationally-heavy workloads. Recent BLAS libraries utilize parallel cores of GPU architectures efficiently by employing inherent data parallelism. In this study, we analyze GPU-targeted functions from two BLAS libraries, cuBLAS and MAGMA, and evaluate their performance on a single-GPU NVIDIA architecture by considering architectural features and limitations. We collect architectural performance metrics and explore resource utilization characteristics. Our work aims to help researchers and programmers to understand the performance behavior and GPU resource utilization of the BLAS routines implemented by the libraries.","PeriodicalId":519023,"journal":{"name":"Deu Muhendislik Fakultesi Fen ve Muhendislik","volume":"25 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"BLAS Kütüphanelerinin GPU Mimarilerindeki Nicel Performans Analizi\",\"authors\":\"Isil Öz\",\"doi\":\"10.21205/deufmd.2024267606\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Basic Linear Algebra Subprograms (BLAS) are a set of linear algebra routines commonly used by machine learning applications and scientific computing. BLAS libraries with optimized implementations of BLAS routines offer high performance by exploiting parallel execution units in target computing systems. With massively large number of cores, graphics processing units (GPUs) exhibit high performance for computationally-heavy workloads. Recent BLAS libraries utilize parallel cores of GPU architectures efficiently by employing inherent data parallelism. In this study, we analyze GPU-targeted functions from two BLAS libraries, cuBLAS and MAGMA, and evaluate their performance on a single-GPU NVIDIA architecture by considering architectural features and limitations. We collect architectural performance metrics and explore resource utilization characteristics. Our work aims to help researchers and programmers to understand the performance behavior and GPU resource utilization of the BLAS routines implemented by the libraries.\",\"PeriodicalId\":519023,\"journal\":{\"name\":\"Deu Muhendislik Fakultesi Fen ve Muhendislik\",\"volume\":\"25 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Deu Muhendislik Fakultesi Fen ve Muhendislik\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21205/deufmd.2024267606\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Deu Muhendislik Fakultesi Fen ve Muhendislik","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21205/deufmd.2024267606","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
BLAS Kütüphanelerinin GPU Mimarilerindeki Nicel Performans Analizi
Basic Linear Algebra Subprograms (BLAS) are a set of linear algebra routines commonly used by machine learning applications and scientific computing. BLAS libraries with optimized implementations of BLAS routines offer high performance by exploiting parallel execution units in target computing systems. With massively large number of cores, graphics processing units (GPUs) exhibit high performance for computationally-heavy workloads. Recent BLAS libraries utilize parallel cores of GPU architectures efficiently by employing inherent data parallelism. In this study, we analyze GPU-targeted functions from two BLAS libraries, cuBLAS and MAGMA, and evaluate their performance on a single-GPU NVIDIA architecture by considering architectural features and limitations. We collect architectural performance metrics and explore resource utilization characteristics. Our work aims to help researchers and programmers to understand the performance behavior and GPU resource utilization of the BLAS routines implemented by the libraries.