实现深度神经网络处理-内存仿真的架构级框架

Inseong Hwang, Jihoon Jang, Hyun Kim
{"title":"实现深度神经网络处理-内存仿真的架构级框架","authors":"Inseong Hwang, Jihoon Jang, Hyun Kim","doi":"10.1109/ICEIC61013.2024.10457163","DOIUrl":null,"url":null,"abstract":"The emulation or layout in the study of processing-in-memory (PIM) is a highly time-consuming process. Especially, the processing-using-memory (PUM), a subset of PIM, is much more complex due to the positioning of the processing unit in the high-density data array. Because of this reason, it is important to efficiently verify PIM hardware using simulation to activate the PIM study. To this end, we modify the DRAMsim3, a memory simulator, to implement a PUM system, and propose a PIM operation compiler in the Zsim, a CPU simulator. The PIM operation compiler performs the role of tracing instructions from various precision deep neural network (DNN) workloads and generating PIM operation commands. Finally, we propose an architecture-level PUM simulation framework that can simulate the PUM system with DNN workloads based on the PIM command generated by the compiler.","PeriodicalId":518726,"journal":{"name":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","volume":"364 6","pages":"1-3"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"An Architecture-Level Framework for Enabling Processing-Using-Memory Simulations in Deep Neural Networks\",\"authors\":\"Inseong Hwang, Jihoon Jang, Hyun Kim\",\"doi\":\"10.1109/ICEIC61013.2024.10457163\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The emulation or layout in the study of processing-in-memory (PIM) is a highly time-consuming process. Especially, the processing-using-memory (PUM), a subset of PIM, is much more complex due to the positioning of the processing unit in the high-density data array. Because of this reason, it is important to efficiently verify PIM hardware using simulation to activate the PIM study. To this end, we modify the DRAMsim3, a memory simulator, to implement a PUM system, and propose a PIM operation compiler in the Zsim, a CPU simulator. The PIM operation compiler performs the role of tracing instructions from various precision deep neural network (DNN) workloads and generating PIM operation commands. Finally, we propose an architecture-level PUM simulation framework that can simulate the PUM system with DNN workloads based on the PIM command generated by the compiler.\",\"PeriodicalId\":518726,\"journal\":{\"name\":\"2024 International Conference on Electronics, Information, and Communication (ICEIC)\",\"volume\":\"364 6\",\"pages\":\"1-3\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Electronics, Information, and Communication (ICEIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICEIC61013.2024.10457163\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Electronics, Information, and Communication (ICEIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICEIC61013.2024.10457163","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

内存处理(PIM)研究中的仿真或布局是一个非常耗时的过程。特别是作为 PIM 子集的内存处理(PUM),由于处理单元在高密度数据阵列中的定位,其复杂程度更高。正因为如此,利用仿真来有效验证 PIM 硬件以启动 PIM 研究就显得尤为重要。为此,我们修改了内存模拟器 DRAMsim3 以实现 PUM 系统,并在 CPU 模拟器 Zsim 中提出了 PIM 操作编译器。PIM 操作编译器的作用是追踪各种精密深度神经网络(DNN)工作负载的指令,并生成 PIM 操作命令。最后,我们提出了一个架构级 PUM 仿真框架,该框架可根据编译器生成的 PIM 命令模拟带有 DNN 工作负载的 PUM 系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
An Architecture-Level Framework for Enabling Processing-Using-Memory Simulations in Deep Neural Networks
The emulation or layout in the study of processing-in-memory (PIM) is a highly time-consuming process. Especially, the processing-using-memory (PUM), a subset of PIM, is much more complex due to the positioning of the processing unit in the high-density data array. Because of this reason, it is important to efficiently verify PIM hardware using simulation to activate the PIM study. To this end, we modify the DRAMsim3, a memory simulator, to implement a PUM system, and propose a PIM operation compiler in the Zsim, a CPU simulator. The PIM operation compiler performs the role of tracing instructions from various precision deep neural network (DNN) workloads and generating PIM operation commands. Finally, we propose an architecture-level PUM simulation framework that can simulate the PUM system with DNN workloads based on the PIM command generated by the compiler.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信