{"title":"利用人工智能方法优化劳动力效率:新一代人力资源管理系统","authors":"Priya Chanda, Sukanta Ghosh","doi":"10.1109/ICETSIS61505.2024.10459590","DOIUrl":null,"url":null,"abstract":"Human capital is a paramount asset within any organization, evolving into distinct facets that fortify its competitive edge amid a perpetually shifting market landscape. Securing high-quality candidates necessitates minimizing human intervention and validating candidate credentials during recruitment. Moreover, gauging employee performance and anticipating attrition prove pivotal in effective human resource management. This study endeavors to introduce an innovative human resource management system employing machine learning and blockchain. The objective is to create an intelligent system that reduces human subjectivity and time in candidate selection while forecasting employee performance and attrition. Leveraging unsupervised learning algorithms and natural language processing, the system conducts skill assessment and resumes categorization after the extraction of raw data via object character recognition. Candidate validation relies on comparing blockchain-stored records. Supervised machine learning classification predicts employee performance and attrition with high precision, generating standardized scores based on multiple attributes aligned with specific e-competence frameworks, aiming to foster workplace productivity while minimizing financial losses.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimizing Workforce Efficiency Using an Artificial Intelligence Approach: A Next-Gen HR Management System\",\"authors\":\"Priya Chanda, Sukanta Ghosh\",\"doi\":\"10.1109/ICETSIS61505.2024.10459590\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Human capital is a paramount asset within any organization, evolving into distinct facets that fortify its competitive edge amid a perpetually shifting market landscape. Securing high-quality candidates necessitates minimizing human intervention and validating candidate credentials during recruitment. Moreover, gauging employee performance and anticipating attrition prove pivotal in effective human resource management. This study endeavors to introduce an innovative human resource management system employing machine learning and blockchain. The objective is to create an intelligent system that reduces human subjectivity and time in candidate selection while forecasting employee performance and attrition. Leveraging unsupervised learning algorithms and natural language processing, the system conducts skill assessment and resumes categorization after the extraction of raw data via object character recognition. Candidate validation relies on comparing blockchain-stored records. Supervised machine learning classification predicts employee performance and attrition with high precision, generating standardized scores based on multiple attributes aligned with specific e-competence frameworks, aiming to foster workplace productivity while minimizing financial losses.\",\"PeriodicalId\":518932,\"journal\":{\"name\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETSIS61505.2024.10459590\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459590","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Optimizing Workforce Efficiency Using an Artificial Intelligence Approach: A Next-Gen HR Management System
Human capital is a paramount asset within any organization, evolving into distinct facets that fortify its competitive edge amid a perpetually shifting market landscape. Securing high-quality candidates necessitates minimizing human intervention and validating candidate credentials during recruitment. Moreover, gauging employee performance and anticipating attrition prove pivotal in effective human resource management. This study endeavors to introduce an innovative human resource management system employing machine learning and blockchain. The objective is to create an intelligent system that reduces human subjectivity and time in candidate selection while forecasting employee performance and attrition. Leveraging unsupervised learning algorithms and natural language processing, the system conducts skill assessment and resumes categorization after the extraction of raw data via object character recognition. Candidate validation relies on comparing blockchain-stored records. Supervised machine learning classification predicts employee performance and attrition with high precision, generating standardized scores based on multiple attributes aligned with specific e-competence frameworks, aiming to foster workplace productivity while minimizing financial losses.