用于风能预测的混合深度学习模型建议

Hamed H. Aly
{"title":"用于风能预测的混合深度学习模型建议","authors":"Hamed H. Aly","doi":"10.1109/ICETSIS61505.2024.10459633","DOIUrl":null,"url":null,"abstract":"Renewable energy forecasting is crucially important because of its fluctuation and stochastic characteristics. In this paper, a hybrid model for wind speed and power forecasting using neuro wavelet and long short-term memory (LSTM) is proposed. The architecture of the proposed forecasting model involves two steps; the first step is to employ a time-based neuro wavelet for the wind speed or power forecasting. The second step is to subtract the forecasted wind speed or power from the actual ones to calculate the error (residuals). This error is then fed as an input to the LSTM to determine the forecasted wind speed or power error. The forecasted wind speed will be equal to that from the first step and the forecasted wind error from the second step. The same procedures are repeated for the forecasted wind power. In this paper, a simulated model for wind power is used. The results demonstrate the effectiveness of the proposed model for wind speed and power forecasting.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Proposed Hybrid Deep Learning Model for Wind Power Forecasting\",\"authors\":\"Hamed H. Aly\",\"doi\":\"10.1109/ICETSIS61505.2024.10459633\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Renewable energy forecasting is crucially important because of its fluctuation and stochastic characteristics. In this paper, a hybrid model for wind speed and power forecasting using neuro wavelet and long short-term memory (LSTM) is proposed. The architecture of the proposed forecasting model involves two steps; the first step is to employ a time-based neuro wavelet for the wind speed or power forecasting. The second step is to subtract the forecasted wind speed or power from the actual ones to calculate the error (residuals). This error is then fed as an input to the LSTM to determine the forecasted wind speed or power error. The forecasted wind speed will be equal to that from the first step and the forecasted wind error from the second step. The same procedures are repeated for the forecasted wind power. In this paper, a simulated model for wind power is used. The results demonstrate the effectiveness of the proposed model for wind speed and power forecasting.\",\"PeriodicalId\":518932,\"journal\":{\"name\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETSIS61505.2024.10459633\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459633","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

可再生能源具有波动性和随机性的特点,因此其预测至关重要。本文提出了一种利用神经小波和长短期记忆(LSTM)进行风速和功率预测的混合模型。所提预测模型的结构包括两个步骤:第一步是采用基于时间的神经小波进行风速或功率预测。第二步是将预测风速或功率与实际风速或功率相减,计算误差(残差)。然后将该误差作为 LSTM 的输入,以确定预测风速或功率误差。预报风速等于第一步得出的风速,预报风力误差等于第二步得出的风力误差。同样的程序也会重复用于预测风力发电量。本文使用了一个风力发电模拟模型。结果表明,所建议的模型在风速和风力预测方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
A Proposed Hybrid Deep Learning Model for Wind Power Forecasting
Renewable energy forecasting is crucially important because of its fluctuation and stochastic characteristics. In this paper, a hybrid model for wind speed and power forecasting using neuro wavelet and long short-term memory (LSTM) is proposed. The architecture of the proposed forecasting model involves two steps; the first step is to employ a time-based neuro wavelet for the wind speed or power forecasting. The second step is to subtract the forecasted wind speed or power from the actual ones to calculate the error (residuals). This error is then fed as an input to the LSTM to determine the forecasted wind speed or power error. The forecasted wind speed will be equal to that from the first step and the forecasted wind error from the second step. The same procedures are repeated for the forecasted wind power. In this paper, a simulated model for wind power is used. The results demonstrate the effectiveness of the proposed model for wind speed and power forecasting.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信