基于 YOLOv5 的小物体检测算法研究

Siyuan Shen
{"title":"基于 YOLOv5 的小物体检测算法研究","authors":"Siyuan Shen","doi":"10.1109/ICPECA60615.2024.10470977","DOIUrl":null,"url":null,"abstract":"This article introduces an improvement in the YOLOv5 architecture by incorporating the CBAM (Convolutional Block Attention Module) attention module at the neck network end. CBAM is added after each concatenation operation to enhance the focus on small targets and optimize the fusion features in the neck. The role of CBAM is to strengthen the extraction of features by automatically ignoring irrelevant information, focusing on the fusion of crucial features, thereby improving the model's analytical capabilities for complex scenes. Experimental results indicate that the addition of the CBAM module successfully enhances the YOLOv5s model by highlighting key features and suppressing unimportant ones. This results in output feature maps containing more valuable information, significantly improving the accuracy of object detection. This improvement has shown positive effects in small object detection, feature fusion, and model speed.","PeriodicalId":518671,"journal":{"name":"2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA)","volume":"61 2","pages":"937-942"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Research on Small Object Detection Algorithm Based on YOLOv5\",\"authors\":\"Siyuan Shen\",\"doi\":\"10.1109/ICPECA60615.2024.10470977\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article introduces an improvement in the YOLOv5 architecture by incorporating the CBAM (Convolutional Block Attention Module) attention module at the neck network end. CBAM is added after each concatenation operation to enhance the focus on small targets and optimize the fusion features in the neck. The role of CBAM is to strengthen the extraction of features by automatically ignoring irrelevant information, focusing on the fusion of crucial features, thereby improving the model's analytical capabilities for complex scenes. Experimental results indicate that the addition of the CBAM module successfully enhances the YOLOv5s model by highlighting key features and suppressing unimportant ones. This results in output feature maps containing more valuable information, significantly improving the accuracy of object detection. This improvement has shown positive effects in small object detection, feature fusion, and model speed.\",\"PeriodicalId\":518671,\"journal\":{\"name\":\"2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA)\",\"volume\":\"61 2\",\"pages\":\"937-942\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICPECA60615.2024.10470977\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 IEEE 4th International Conference on Power, Electronics and Computer Applications (ICPECA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICPECA60615.2024.10470977","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文通过在颈部网络端加入 CBAM(卷积块注意力模块)注意力模块,对 YOLOv5 架构进行了改进。CBAM 添加于每次连接操作之后,以加强对小目标的关注并优化颈部的融合特征。CBAM 的作用是通过自动忽略无关信息来加强特征提取,集中融合关键特征,从而提高模型对复杂场景的分析能力。实验结果表明,添加 CBAM 模块后,YOLOv5s 模型能够突出关键特征,抑制不重要的特征,从而成功地增强了模型。这使得输出的特征图包含了更多有价值的信息,大大提高了物体检测的准确性。这种改进在小物体检测、特征融合和模型速度方面都显示出了积极的效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Research on Small Object Detection Algorithm Based on YOLOv5
This article introduces an improvement in the YOLOv5 architecture by incorporating the CBAM (Convolutional Block Attention Module) attention module at the neck network end. CBAM is added after each concatenation operation to enhance the focus on small targets and optimize the fusion features in the neck. The role of CBAM is to strengthen the extraction of features by automatically ignoring irrelevant information, focusing on the fusion of crucial features, thereby improving the model's analytical capabilities for complex scenes. Experimental results indicate that the addition of the CBAM module successfully enhances the YOLOv5s model by highlighting key features and suppressing unimportant ones. This results in output feature maps containing more valuable information, significantly improving the accuracy of object detection. This improvement has shown positive effects in small object detection, feature fusion, and model speed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信