利用梯度插值和核平滑法进行连续治疗效果估计

Lokesh Nagalapatti, Akshay Iyer, Abir De, Sunita Sarawagi
{"title":"利用梯度插值和核平滑法进行连续治疗效果估计","authors":"Lokesh Nagalapatti, Akshay Iyer, Abir De, Sunita Sarawagi","doi":"10.48550/arXiv.2401.15447","DOIUrl":null,"url":null,"abstract":"We address the Individualized continuous treatment effect\n(ICTE) estimation problem where we predict the effect of\nany continuous valued treatment on an individual using ob-\nservational data. The main challenge in this estimation task\nis the potential confounding of treatment assignment with in-\ndividual’s covariates in the training data, whereas during in-\nference ICTE requires prediction on independently sampled\ntreatments. In contrast to prior work that relied on regularizers\nor unstable GAN training, we advocate the direct approach\nof augmenting training individuals with independently sam-\npled treatments and inferred counterfactual outcomes. We in-\nfer counterfactual outcomes using a two-pronged strategy: a\nGradient Interpolation for close-to-observed treatments, and\na Gaussian Process based Kernel Smoothing which allows\nus to down weigh high variance inferences. We evaluate our\nmethod on five benchmarks and show that our method out-\nperforms six state-of-the-art methods on the counterfactual\nestimation error. We analyze the superior performance of our\nmethod by showing that (1) our inferred counterfactual re-\nsponses are more accurate, and (2) adding them to the train-\ning data reduces the distributional distance between the con-\nfounded training distribution and test distribution where treat-\nment is independent of covariates. Our proposed method is\nmodel-agnostic and we show that it improves ICTE accuracy\nof several existing models.","PeriodicalId":518480,"journal":{"name":"AAAI Conference on Artificial Intelligence","volume":"178 6","pages":"14397-14404"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-27","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Treatment Effect Estimation Using Gradient Interpolation and Kernel Smoothing\",\"authors\":\"Lokesh Nagalapatti, Akshay Iyer, Abir De, Sunita Sarawagi\",\"doi\":\"10.48550/arXiv.2401.15447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We address the Individualized continuous treatment effect\\n(ICTE) estimation problem where we predict the effect of\\nany continuous valued treatment on an individual using ob-\\nservational data. The main challenge in this estimation task\\nis the potential confounding of treatment assignment with in-\\ndividual’s covariates in the training data, whereas during in-\\nference ICTE requires prediction on independently sampled\\ntreatments. In contrast to prior work that relied on regularizers\\nor unstable GAN training, we advocate the direct approach\\nof augmenting training individuals with independently sam-\\npled treatments and inferred counterfactual outcomes. We in-\\nfer counterfactual outcomes using a two-pronged strategy: a\\nGradient Interpolation for close-to-observed treatments, and\\na Gaussian Process based Kernel Smoothing which allows\\nus to down weigh high variance inferences. We evaluate our\\nmethod on five benchmarks and show that our method out-\\nperforms six state-of-the-art methods on the counterfactual\\nestimation error. We analyze the superior performance of our\\nmethod by showing that (1) our inferred counterfactual re-\\nsponses are more accurate, and (2) adding them to the train-\\ning data reduces the distributional distance between the con-\\nfounded training distribution and test distribution where treat-\\nment is independent of covariates. Our proposed method is\\nmodel-agnostic and we show that it improves ICTE accuracy\\nof several existing models.\",\"PeriodicalId\":518480,\"journal\":{\"name\":\"AAAI Conference on Artificial Intelligence\",\"volume\":\"178 6\",\"pages\":\"14397-14404\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-27\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"AAAI Conference on Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.48550/arXiv.2401.15447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"AAAI Conference on Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.48550/arXiv.2401.15447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们要解决个体化连续治疗效果(ICTE)估计问题,即利用观察数据预测任何连续治疗对个体的效果。这一估计任务的主要挑战在于治疗分配可能与训练数据中的个体协变量混淆,而在推断过程中,ICTE 需要对独立采样的治疗进行预测。与之前依赖正则化器或不稳定 GAN 训练的工作不同,我们主张直接使用独立采样的治疗方法和推断出的反事实结果来增强训练个体。我们使用双管齐下的策略来推断反事实结果:梯度插值法用于接近观察到的处理方法,而基于高斯过程的核平滑法则允许我们降低高方差推断的权重。我们在五个基准上对我们的方法进行了评估,结果表明我们的方法在反事实估计误差方面优于六种最先进的方法。我们分析了我们的方法的优越性能,表明:(1) 我们推断出的反事实再反应更准确;(2) 将它们添加到训练数据中,可以减少在处理与协变量无关的情况下,有根据的训练分布与测试分布之间的分布距离。我们提出的方法与模型无关,而且我们的研究表明,它提高了几个现有模型的 ICTE 准确性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Treatment Effect Estimation Using Gradient Interpolation and Kernel Smoothing
We address the Individualized continuous treatment effect (ICTE) estimation problem where we predict the effect of any continuous valued treatment on an individual using ob- servational data. The main challenge in this estimation task is the potential confounding of treatment assignment with in- dividual’s covariates in the training data, whereas during in- ference ICTE requires prediction on independently sampled treatments. In contrast to prior work that relied on regularizers or unstable GAN training, we advocate the direct approach of augmenting training individuals with independently sam- pled treatments and inferred counterfactual outcomes. We in- fer counterfactual outcomes using a two-pronged strategy: a Gradient Interpolation for close-to-observed treatments, and a Gaussian Process based Kernel Smoothing which allows us to down weigh high variance inferences. We evaluate our method on five benchmarks and show that our method out- performs six state-of-the-art methods on the counterfactual estimation error. We analyze the superior performance of our method by showing that (1) our inferred counterfactual re- sponses are more accurate, and (2) adding them to the train- ing data reduces the distributional distance between the con- founded training distribution and test distribution where treat- ment is independent of covariates. Our proposed method is model-agnostic and we show that it improves ICTE accuracy of several existing models.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信