深度学习预测心血管疾病

Mokammel Hossain Tito, Md Arifuzzaman, Alifa Nasrin, Shahzad Khan, M. Asaduzzaman, Muhammad Shahzad Chohan, Ali Nabil Al-Duais
{"title":"深度学习预测心血管疾病","authors":"Mokammel Hossain Tito, Md Arifuzzaman, Alifa Nasrin, Shahzad Khan, M. Asaduzzaman, Muhammad Shahzad Chohan, Ali Nabil Al-Duais","doi":"10.1109/ICETSIS61505.2024.10459447","DOIUrl":null,"url":null,"abstract":"This study compares three deep learning algorithms for cardiovascular disease risk prediction. While RBFN boasts the highest accuracy (84.07%), wekaDeeplearning4j excels in identifying high-risk individuals via better AUC and PRC area, valuable for prioritizing early intervention despite slightly lower overall accuracy (81.85%). Conversely, MLP's low mean absolute error indicates high precision in individual case prediction, ideal for personalized treatments. However, tradeoffs exist: wekaDeeplearning4j requires longer training times, and MLP's precision may sacrifice sensitivity. Choosing the optimal algorithm depends on context and priorities. High accuracy and speed favor RBFN, while superior high-risk identification or precise individual predictions favor wekaDeeplearning4j or MLP, respectively. Understanding these trade-offs is crucial for maximizing deep learning's effectiveness in cardiovascular disease risk prediction.","PeriodicalId":518932,"journal":{"name":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning for Prediction of Cardiovascular Disease\",\"authors\":\"Mokammel Hossain Tito, Md Arifuzzaman, Alifa Nasrin, Shahzad Khan, M. Asaduzzaman, Muhammad Shahzad Chohan, Ali Nabil Al-Duais\",\"doi\":\"10.1109/ICETSIS61505.2024.10459447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study compares three deep learning algorithms for cardiovascular disease risk prediction. While RBFN boasts the highest accuracy (84.07%), wekaDeeplearning4j excels in identifying high-risk individuals via better AUC and PRC area, valuable for prioritizing early intervention despite slightly lower overall accuracy (81.85%). Conversely, MLP's low mean absolute error indicates high precision in individual case prediction, ideal for personalized treatments. However, tradeoffs exist: wekaDeeplearning4j requires longer training times, and MLP's precision may sacrifice sensitivity. Choosing the optimal algorithm depends on context and priorities. High accuracy and speed favor RBFN, while superior high-risk identification or precise individual predictions favor wekaDeeplearning4j or MLP, respectively. Understanding these trade-offs is crucial for maximizing deep learning's effectiveness in cardiovascular disease risk prediction.\",\"PeriodicalId\":518932,\"journal\":{\"name\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICETSIS61505.2024.10459447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 ASU International Conference in Emerging Technologies for Sustainability and Intelligent Systems (ICETSIS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICETSIS61505.2024.10459447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究比较了三种用于心血管疾病风险预测的深度学习算法。虽然 RBFN 的准确率最高(84.07%),但 wekaDeeplearning4j 通过更好的 AUC 和 PRC 面积在识别高风险个体方面表现出色,尽管总体准确率略低(81.85%),但对优先考虑早期干预很有价值。相反,MLP 的平均绝对误差较低,这表明其对单个病例的预测精度较高,是个性化治疗的理想选择。不过,这其中也存在折衷:wekaDeeplearning4j 需要较长的训练时间,而 MLP 的精确性可能会牺牲灵敏度。选择最佳算法取决于环境和优先级。高精度和高速度有利于 RBFN,而卓越的高风险识别或精确的个体预测则分别有利于 wekaDeeplearning4j 或 MLP。理解这些权衡对于最大限度地发挥深度学习在心血管疾病风险预测中的作用至关重要。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning for Prediction of Cardiovascular Disease
This study compares three deep learning algorithms for cardiovascular disease risk prediction. While RBFN boasts the highest accuracy (84.07%), wekaDeeplearning4j excels in identifying high-risk individuals via better AUC and PRC area, valuable for prioritizing early intervention despite slightly lower overall accuracy (81.85%). Conversely, MLP's low mean absolute error indicates high precision in individual case prediction, ideal for personalized treatments. However, tradeoffs exist: wekaDeeplearning4j requires longer training times, and MLP's precision may sacrifice sensitivity. Choosing the optimal algorithm depends on context and priorities. High accuracy and speed favor RBFN, while superior high-risk identification or precise individual predictions favor wekaDeeplearning4j or MLP, respectively. Understanding these trade-offs is crucial for maximizing deep learning's effectiveness in cardiovascular disease risk prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信