研究生成式对抗网络在预测肿瘤恶性程度中的应用

J. Bhuvana, Megha Pandeya, Deepak Kumar
{"title":"研究生成式对抗网络在预测肿瘤恶性程度中的应用","authors":"J. Bhuvana, Megha Pandeya, Deepak Kumar","doi":"10.1109/ICOCWC60930.2024.10470583","DOIUrl":null,"url":null,"abstract":"This study's paper examines using a generative opposed network as an excellent way to predict the malignancy of tumors in a clinically applicable manner. The examination outcomes imply that the DCGAN-based total version can make surprisingly dependable predictions of tumor malignancy compared to other machine-mastering strategies. Furthermore, the authors additionally propose that the DCGAN-based total version may be hired in scientific applications with promising effects.","PeriodicalId":518901,"journal":{"name":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","volume":"3 4","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Examining the Use of Generative Adversarial Network for Predicting Tumor Malignancy\",\"authors\":\"J. Bhuvana, Megha Pandeya, Deepak Kumar\",\"doi\":\"10.1109/ICOCWC60930.2024.10470583\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study's paper examines using a generative opposed network as an excellent way to predict the malignancy of tumors in a clinically applicable manner. The examination outcomes imply that the DCGAN-based total version can make surprisingly dependable predictions of tumor malignancy compared to other machine-mastering strategies. Furthermore, the authors additionally propose that the DCGAN-based total version may be hired in scientific applications with promising effects.\",\"PeriodicalId\":518901,\"journal\":{\"name\":\"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)\",\"volume\":\"3 4\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCWC60930.2024.10470583\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCWC60930.2024.10470583","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本研究论文探讨了使用生成式对立网络以临床适用的方式预测肿瘤恶性程度的绝佳方法。研究结果表明,与其他机器管理策略相比,基于 DCGAN 的总版本可以对肿瘤的恶性程度做出令人惊讶的可靠预测。此外,作者还建议在科学应用中采用基于 DCGAN 的总版本,并取得良好效果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Examining the Use of Generative Adversarial Network for Predicting Tumor Malignancy
This study's paper examines using a generative opposed network as an excellent way to predict the malignancy of tumors in a clinically applicable manner. The examination outcomes imply that the DCGAN-based total version can make surprisingly dependable predictions of tumor malignancy compared to other machine-mastering strategies. Furthermore, the authors additionally propose that the DCGAN-based total version may be hired in scientific applications with promising effects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信