探索 LSTM 参数对自动文本摘要网络性能的影响

R. Naaz, K. R, Surendra Yadav
{"title":"探索 LSTM 参数对自动文本摘要网络性能的影响","authors":"R. Naaz, K. R, Surendra Yadav","doi":"10.1109/ICOCWC60930.2024.10470615","DOIUrl":null,"url":null,"abstract":"This technical abstract explores the impact of extended quick-term reminiscence (LSTM) parameters on net overall performance for automated textual content summarization within the Korean language. It observes and considers the parameters of phrase embedding size, sentence length, and encoding intensity. Embedding length substantially affects the community's overall performance, and a pair of dimensional representations of word embedding can improve summarization accuracy. Increasing sentence duration additionally showed enhancements, with the very best accuracy executed at triple sentence embedding lengths. Eventually, encoding intensity had a low effect on network performance, with only barely better results visible with double and triple encodings. Overall, this observation concluded that gold standard network performance for textual content summarization in the Korean language is pleasant and finished via a mixture of two-dimensional embedding with an elevated sentence length and unmarried encoding intensity.","PeriodicalId":518901,"journal":{"name":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","volume":"113 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Exploring the Impact of LSTM Parameters on Network Performance for Automatic Text Summarization\",\"authors\":\"R. Naaz, K. R, Surendra Yadav\",\"doi\":\"10.1109/ICOCWC60930.2024.10470615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This technical abstract explores the impact of extended quick-term reminiscence (LSTM) parameters on net overall performance for automated textual content summarization within the Korean language. It observes and considers the parameters of phrase embedding size, sentence length, and encoding intensity. Embedding length substantially affects the community's overall performance, and a pair of dimensional representations of word embedding can improve summarization accuracy. Increasing sentence duration additionally showed enhancements, with the very best accuracy executed at triple sentence embedding lengths. Eventually, encoding intensity had a low effect on network performance, with only barely better results visible with double and triple encodings. Overall, this observation concluded that gold standard network performance for textual content summarization in the Korean language is pleasant and finished via a mixture of two-dimensional embedding with an elevated sentence length and unmarried encoding intensity.\",\"PeriodicalId\":518901,\"journal\":{\"name\":\"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)\",\"volume\":\"113 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOCWC60930.2024.10470615\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Optimization Computing and Wireless Communication (ICOCWC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOCWC60930.2024.10470615","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本技术摘要探讨了扩展快速记忆(LSTM)参数对韩语自动文本内容摘要的整体净性能的影响。它观察并考虑了短语嵌入大小、句子长度和编码强度等参数。嵌入长度极大地影响了社区的整体性能,而单词嵌入的一对维度表示可以提高摘要的准确性。此外,增加句子长度也能提高准确率,三倍句子嵌入长度时的准确率最高。最后,编码强度对网络性能的影响较小,只有在双倍和三倍编码时才能勉强看到更好的结果。总之,这项观察得出结论,韩语文本内容摘要的黄金标准网络性能通过二维嵌入、提高句子长度和单一编码强度的混合来实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Exploring the Impact of LSTM Parameters on Network Performance for Automatic Text Summarization
This technical abstract explores the impact of extended quick-term reminiscence (LSTM) parameters on net overall performance for automated textual content summarization within the Korean language. It observes and considers the parameters of phrase embedding size, sentence length, and encoding intensity. Embedding length substantially affects the community's overall performance, and a pair of dimensional representations of word embedding can improve summarization accuracy. Increasing sentence duration additionally showed enhancements, with the very best accuracy executed at triple sentence embedding lengths. Eventually, encoding intensity had a low effect on network performance, with only barely better results visible with double and triple encodings. Overall, this observation concluded that gold standard network performance for textual content summarization in the Korean language is pleasant and finished via a mixture of two-dimensional embedding with an elevated sentence length and unmarried encoding intensity.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信