粒子物理学中的量子算法

Germ'an Rodrigo
{"title":"粒子物理学中的量子算法","authors":"Germ'an Rodrigo","doi":"10.5506/aphyspolbsupp.17.2-a14","DOIUrl":null,"url":null,"abstract":"We motivate the use of quantum algorithms in particle physics and provide a brief overview of the most recent applications at high-energy colliders. In particular, we discuss in detail how a quantum approach reduces the complexity of jet clustering algorithms, such as anti-kT , and show how quantum algorithms efficiently identify causal configurations of multiloop Feynman diagrams. We also present a quantum integration algorithm, called QFIAE, which is successfully applied to the evaluation of one-loop Feynman integrals in a quantum simulator or in a real quantum device.","PeriodicalId":518199,"journal":{"name":"Acta Physica Polonica B Proceedings Supplement","volume":"71 31","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-29","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Quantum Algorithms in Particle Physics\",\"authors\":\"Germ'an Rodrigo\",\"doi\":\"10.5506/aphyspolbsupp.17.2-a14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We motivate the use of quantum algorithms in particle physics and provide a brief overview of the most recent applications at high-energy colliders. In particular, we discuss in detail how a quantum approach reduces the complexity of jet clustering algorithms, such as anti-kT , and show how quantum algorithms efficiently identify causal configurations of multiloop Feynman diagrams. We also present a quantum integration algorithm, called QFIAE, which is successfully applied to the evaluation of one-loop Feynman integrals in a quantum simulator or in a real quantum device.\",\"PeriodicalId\":518199,\"journal\":{\"name\":\"Acta Physica Polonica B Proceedings Supplement\",\"volume\":\"71 31\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-29\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Acta Physica Polonica B Proceedings Supplement\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5506/aphyspolbsupp.17.2-a14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Acta Physica Polonica B Proceedings Supplement","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5506/aphyspolbsupp.17.2-a14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

我们介绍了量子算法在粒子物理学中的应用,并简要概述了量子算法在高能对撞机中的最新应用。特别是,我们详细讨论了量子方法如何降低喷流聚类算法(如反 kT)的复杂性,并展示了量子算法如何高效地识别多环费曼图的因果构型。我们还介绍了一种名为 QFIAE 的量子积分算法,它被成功地应用于量子模拟器或真实量子设备中的一环费曼积分评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Quantum Algorithms in Particle Physics
We motivate the use of quantum algorithms in particle physics and provide a brief overview of the most recent applications at high-energy colliders. In particular, we discuss in detail how a quantum approach reduces the complexity of jet clustering algorithms, such as anti-kT , and show how quantum algorithms efficiently identify causal configurations of multiloop Feynman diagrams. We also present a quantum integration algorithm, called QFIAE, which is successfully applied to the evaluation of one-loop Feynman integrals in a quantum simulator or in a real quantum device.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信