使用意见挖掘的基于协作过滤的电影推荐服务

Luong Vuong Nguyen
{"title":"使用意见挖掘的基于协作过滤的电影推荐服务","authors":"Luong Vuong Nguyen","doi":"10.1109/ACDSA59508.2024.10467884","DOIUrl":null,"url":null,"abstract":"This article explores the fusion of collaborative filtering (CF) techniques with opinion mining methodologies to enhance movie recommendation systems. The proposed approach harnesses user-item interaction data to employ CF algorithms for generating initial movie recommendations. Furthermore, opinion mining techniques are integrated to analyze textual reviews and extract implicit sentiment signals associated with movies. Leveraging sentiment-aware adjustments, the model refines CF-based recommendations by incorporating user sentiments expressed in reviews. In specifically, conducting aspect-based sentiment analysis on movie reviews leveraging a Long Short-Term Memory (LSTM) neural network architecture. The methodology involves applying LSTM-based sentiment analysis to extract sentiments from movie reviews, followed by aspect identification and sentiment assignment to specific movie elements or aspects. This aspect-focused sentiment analysis approach using LSTM-based sentiment analysis contributes to a comprehensive understanding of movie reviews. The fusion of CF with opinion mining techniques in movie recommendation systems represents a significant advancement toward enhancing recommendation accuracy and personalization.","PeriodicalId":518964,"journal":{"name":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","volume":"373 ","pages":"1-5"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Collaborative Filtering-based Movie Recommendation Services Using Opinion Mining\",\"authors\":\"Luong Vuong Nguyen\",\"doi\":\"10.1109/ACDSA59508.2024.10467884\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article explores the fusion of collaborative filtering (CF) techniques with opinion mining methodologies to enhance movie recommendation systems. The proposed approach harnesses user-item interaction data to employ CF algorithms for generating initial movie recommendations. Furthermore, opinion mining techniques are integrated to analyze textual reviews and extract implicit sentiment signals associated with movies. Leveraging sentiment-aware adjustments, the model refines CF-based recommendations by incorporating user sentiments expressed in reviews. In specifically, conducting aspect-based sentiment analysis on movie reviews leveraging a Long Short-Term Memory (LSTM) neural network architecture. The methodology involves applying LSTM-based sentiment analysis to extract sentiments from movie reviews, followed by aspect identification and sentiment assignment to specific movie elements or aspects. This aspect-focused sentiment analysis approach using LSTM-based sentiment analysis contributes to a comprehensive understanding of movie reviews. The fusion of CF with opinion mining techniques in movie recommendation systems represents a significant advancement toward enhancing recommendation accuracy and personalization.\",\"PeriodicalId\":518964,\"journal\":{\"name\":\"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)\",\"volume\":\"373 \",\"pages\":\"1-5\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACDSA59508.2024.10467884\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACDSA59508.2024.10467884","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文探讨了协同过滤(CF)技术与意见挖掘方法的融合,以增强电影推荐系统。所提出的方法利用用户与项目的交互数据,采用 CF 算法生成初始电影推荐。此外,还整合了意见挖掘技术,以分析文本评论并提取与电影相关的隐含情感信号。利用情感感知调整功能,该模型通过纳入评论中表达的用户情感来完善基于 CF 的推荐。具体来说,利用长短期记忆(LSTM)神经网络架构对电影评论进行基于方面的情感分析。该方法包括应用基于 LSTM 的情感分析来提取电影评论中的情感,然后进行方面识别并将情感分配给特定的电影元素或方面。这种基于 LSTM 的情感分析方法以方面为重点,有助于全面了解电影评论。在电影推荐系统中融合 CF 与意见挖掘技术,是提高推荐准确性和个性化的一大进步。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Collaborative Filtering-based Movie Recommendation Services Using Opinion Mining
This article explores the fusion of collaborative filtering (CF) techniques with opinion mining methodologies to enhance movie recommendation systems. The proposed approach harnesses user-item interaction data to employ CF algorithms for generating initial movie recommendations. Furthermore, opinion mining techniques are integrated to analyze textual reviews and extract implicit sentiment signals associated with movies. Leveraging sentiment-aware adjustments, the model refines CF-based recommendations by incorporating user sentiments expressed in reviews. In specifically, conducting aspect-based sentiment analysis on movie reviews leveraging a Long Short-Term Memory (LSTM) neural network architecture. The methodology involves applying LSTM-based sentiment analysis to extract sentiments from movie reviews, followed by aspect identification and sentiment assignment to specific movie elements or aspects. This aspect-focused sentiment analysis approach using LSTM-based sentiment analysis contributes to a comprehensive understanding of movie reviews. The fusion of CF with opinion mining techniques in movie recommendation systems represents a significant advancement toward enhancing recommendation accuracy and personalization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信