医学练习课程中探索与开发问题的强化学习

Roxanne R. Jackson, Damiano Varagnolo, S. Knorn
{"title":"医学练习课程中探索与开发问题的强化学习","authors":"Roxanne R. Jackson, Damiano Varagnolo, S. Knorn","doi":"10.1109/ANZCC59813.2024.10432847","DOIUrl":null,"url":null,"abstract":"Biofeedback in gamified medical exercise sessions has proven to be an effective technique for adapting patient behaviours to improve health outcomes. In this paper, we formulate a method for designing optimal training sessions with two conflicting goals: maximising the desired exercise effect and sufficiently exciting the system for identification in order to update the personalised patient model. We exploit the flexibility of model-free reinforcement learning to obtain an optimal controller, which is robust to uncertainty in the system parameters. We compare the controller from reinforcement learning to a standard dual control formulation in simulation on an illustrative case study of building pelvic floor muscular strength and tone while performing Kegel exercises. The results indicate that the reinforcement learning method attains a better exercise effect while improving the parameter estimates compared to a standard dual controller. However, due to the trial-and-error nature of reinforcement learning, this comes at the expense of computational time.","PeriodicalId":518506,"journal":{"name":"2024 Australian & New Zealand Control Conference (ANZCC)","volume":"385 ","pages":"55-60"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement Learning for Exploration vs. Exploitation Problems in Medical Exercise Sessions\",\"authors\":\"Roxanne R. Jackson, Damiano Varagnolo, S. Knorn\",\"doi\":\"10.1109/ANZCC59813.2024.10432847\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Biofeedback in gamified medical exercise sessions has proven to be an effective technique for adapting patient behaviours to improve health outcomes. In this paper, we formulate a method for designing optimal training sessions with two conflicting goals: maximising the desired exercise effect and sufficiently exciting the system for identification in order to update the personalised patient model. We exploit the flexibility of model-free reinforcement learning to obtain an optimal controller, which is robust to uncertainty in the system parameters. We compare the controller from reinforcement learning to a standard dual control formulation in simulation on an illustrative case study of building pelvic floor muscular strength and tone while performing Kegel exercises. The results indicate that the reinforcement learning method attains a better exercise effect while improving the parameter estimates compared to a standard dual controller. However, due to the trial-and-error nature of reinforcement learning, this comes at the expense of computational time.\",\"PeriodicalId\":518506,\"journal\":{\"name\":\"2024 Australian & New Zealand Control Conference (ANZCC)\",\"volume\":\"385 \",\"pages\":\"55-60\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 Australian & New Zealand Control Conference (ANZCC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ANZCC59813.2024.10432847\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 Australian & New Zealand Control Conference (ANZCC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ANZCC59813.2024.10432847","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

事实证明,游戏化医疗锻炼课程中的生物反馈是调整患者行为以改善健康状况的有效技术。在本文中,我们提出了一种设计最佳训练课程的方法,该方法具有两个相互冲突的目标:最大化预期锻炼效果和充分激发系统识别以更新个性化患者模型。我们利用无模型强化学习的灵活性获得了最佳控制器,该控制器对系统参数的不确定性具有鲁棒性。我们将强化学习的控制器与标准的双重控制配方进行了模拟比较,案例研究是在进行凯格尔运动时增强盆底肌肉的力量和张力。结果表明,与标准双控制器相比,强化学习方法在改善参数估计的同时,还能达到更好的锻炼效果。然而,由于强化学习的试错性质,这需要以牺牲计算时间为代价。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement Learning for Exploration vs. Exploitation Problems in Medical Exercise Sessions
Biofeedback in gamified medical exercise sessions has proven to be an effective technique for adapting patient behaviours to improve health outcomes. In this paper, we formulate a method for designing optimal training sessions with two conflicting goals: maximising the desired exercise effect and sufficiently exciting the system for identification in order to update the personalised patient model. We exploit the flexibility of model-free reinforcement learning to obtain an optimal controller, which is robust to uncertainty in the system parameters. We compare the controller from reinforcement learning to a standard dual control formulation in simulation on an illustrative case study of building pelvic floor muscular strength and tone while performing Kegel exercises. The results indicate that the reinforcement learning method attains a better exercise effect while improving the parameter estimates compared to a standard dual controller. However, due to the trial-and-error nature of reinforcement learning, this comes at the expense of computational time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信