异常检测的持续学习:火山动荡监测案例研究

Miriana Corsaro, Simone Palazzo, C. Spampinato, Flavio Cannavò
{"title":"异常检测的持续学习:火山动荡监测案例研究","authors":"Miriana Corsaro, Simone Palazzo, C. Spampinato, Flavio Cannavò","doi":"10.1109/ACDSA59508.2024.10468041","DOIUrl":null,"url":null,"abstract":"In the field of volcanology, timely detection of anomalies is essential for disaster mitigation. Traditional methods often fall short in adapting to evolving volcanic behavior. We propose a model that combines continual learning and autoencoders to adaptively detect anomalies. The autoencoder extracts relevant features from sensor data, while continual learning enables the model to adapt to changing volcanic patterns. A case study demonstrates its effectiveness in real-time monitoring, offering a data-driven and efficient solution for volcanic anomaly detection.","PeriodicalId":518964,"journal":{"name":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","volume":"129 ","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Continuous Learning for Anomaly Detection: A Case Study in Volcanic Unrest Monitoring\",\"authors\":\"Miriana Corsaro, Simone Palazzo, C. Spampinato, Flavio Cannavò\",\"doi\":\"10.1109/ACDSA59508.2024.10468041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the field of volcanology, timely detection of anomalies is essential for disaster mitigation. Traditional methods often fall short in adapting to evolving volcanic behavior. We propose a model that combines continual learning and autoencoders to adaptively detect anomalies. The autoencoder extracts relevant features from sensor data, while continual learning enables the model to adapt to changing volcanic patterns. A case study demonstrates its effectiveness in real-time monitoring, offering a data-driven and efficient solution for volcanic anomaly detection.\",\"PeriodicalId\":518964,\"journal\":{\"name\":\"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)\",\"volume\":\"129 \",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACDSA59508.2024.10468041\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACDSA59508.2024.10468041","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在火山学领域,及时发现异常现象对于减灾至关重要。传统方法往往无法适应不断变化的火山行为。我们提出了一种结合持续学习和自动编码器的模型,用于自适应地检测异常现象。自动编码器从传感器数据中提取相关特征,而持续学习则使模型能够适应不断变化的火山模式。一项案例研究证明了该模型在实时监测中的有效性,为火山异常检测提供了数据驱动的高效解决方案。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Continuous Learning for Anomaly Detection: A Case Study in Volcanic Unrest Monitoring
In the field of volcanology, timely detection of anomalies is essential for disaster mitigation. Traditional methods often fall short in adapting to evolving volcanic behavior. We propose a model that combines continual learning and autoencoders to adaptively detect anomalies. The autoencoder extracts relevant features from sensor data, while continual learning enables the model to adapt to changing volcanic patterns. A case study demonstrates its effectiveness in real-time monitoring, offering a data-driven and efficient solution for volcanic anomaly detection.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信