建立语义层,提高大数据中块状实体的解析精度

Reham Afifi Abd El Aziz, Doaa Elzanfaly, Marwa Salah Farhan
{"title":"建立语义层,提高大数据中块状实体的解析精度","authors":"Reham Afifi Abd El Aziz, Doaa Elzanfaly, Marwa Salah Farhan","doi":"10.1109/ACDSA59508.2024.10467666","DOIUrl":null,"url":null,"abstract":"Data integration is a major challenge in the era of big data analytics. Inaccurate integration can lead to incorrect analysis results. Entity resolution, which identifies similar entities across different data sources, is a crucial step in the integration process. Existing blocking techniques used to group similar entities before the matching step often neglect semantic criteria, resulting in reduced blocking quality. To address this, a new blocking architecture is proposed in this paper. The architecture incorporates a semantic similarity layer using natural language processing and deep learning techniques. The architecture is schema-agnostic and treats datasets as unstructured records to improve accuracy. Experimental results on benchmark dataset demonstrate the effectiveness of the proposed architecture in terms of recall, reduction ratio, and F-measure.","PeriodicalId":518964,"journal":{"name":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","volume":"39 8","pages":"1-4"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Towards Semantic Layer for Enhancing Blocking Entity Resolution Accuracy in Big Data\",\"authors\":\"Reham Afifi Abd El Aziz, Doaa Elzanfaly, Marwa Salah Farhan\",\"doi\":\"10.1109/ACDSA59508.2024.10467666\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Data integration is a major challenge in the era of big data analytics. Inaccurate integration can lead to incorrect analysis results. Entity resolution, which identifies similar entities across different data sources, is a crucial step in the integration process. Existing blocking techniques used to group similar entities before the matching step often neglect semantic criteria, resulting in reduced blocking quality. To address this, a new blocking architecture is proposed in this paper. The architecture incorporates a semantic similarity layer using natural language processing and deep learning techniques. The architecture is schema-agnostic and treats datasets as unstructured records to improve accuracy. Experimental results on benchmark dataset demonstrate the effectiveness of the proposed architecture in terms of recall, reduction ratio, and F-measure.\",\"PeriodicalId\":518964,\"journal\":{\"name\":\"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)\",\"volume\":\"39 8\",\"pages\":\"1-4\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACDSA59508.2024.10467666\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACDSA59508.2024.10467666","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

数据整合是大数据分析时代的一大挑战。不准确的整合会导致不正确的分析结果。实体解析可识别不同数据源中的相似实体,是整合过程中的关键步骤。用于在匹配步骤之前对相似实体进行分组的现有分块技术往往会忽略语义标准,从而降低分块质量。为了解决这个问题,本文提出了一种新的拦截架构。该架构利用自然语言处理和深度学习技术整合了语义相似性层。该架构与模式无关,将数据集视为非结构化记录,从而提高了准确性。在基准数据集上的实验结果表明,所提出的架构在召回率、缩减率和 F-measure 方面非常有效。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Towards Semantic Layer for Enhancing Blocking Entity Resolution Accuracy in Big Data
Data integration is a major challenge in the era of big data analytics. Inaccurate integration can lead to incorrect analysis results. Entity resolution, which identifies similar entities across different data sources, is a crucial step in the integration process. Existing blocking techniques used to group similar entities before the matching step often neglect semantic criteria, resulting in reduced blocking quality. To address this, a new blocking architecture is proposed in this paper. The architecture incorporates a semantic similarity layer using natural language processing and deep learning techniques. The architecture is schema-agnostic and treats datasets as unstructured records to improve accuracy. Experimental results on benchmark dataset demonstrate the effectiveness of the proposed architecture in terms of recall, reduction ratio, and F-measure.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信