基于强化学习的电动汽车扭矩分配控制:初步分析

Henrique de Carvalho Pinheiro, M. Carello
{"title":"基于强化学习的电动汽车扭矩分配控制:初步分析","authors":"Henrique de Carvalho Pinheiro, M. Carello","doi":"10.1109/ACDSA59508.2024.10467491","DOIUrl":null,"url":null,"abstract":"This article conducts a preliminary exploration of an innovative Reinforcement Learning RL-based control system applied to the Torque Allocation problem in a fully electric All-Wheel-Drive vehicle. The investigation delves into the untapped degrees of freedom in four-motor Electric Vehicles beyond total torque request and Torque Vectoring bias. Utilizing a Deep Deterministic Policy Gradient (DDPG) agent, the RL architecture is implemented within MATLAB/Simulink, incorporating co-simulation with VI-CarRealTime for vehicle dynamics. Comparative analysis against reference Torque Allocation strategies (open differential, FWD, RWD) is performed, assessing key performance factors in the reward function. The most successful RL system, trained with Second Order Sliding Mode Suboptimal torque vectoring algorithm, surpasses the average performance of reference strategies. Nevertheless, challenges such as marginal advantages, repeatability issues, prolonged training durations, and a lack of interpretability are noted.","PeriodicalId":518964,"journal":{"name":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","volume":"21 4","pages":"1-6"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Reinforcement learning based control for torque allocation in electric vehicles: a preliminary analysis\",\"authors\":\"Henrique de Carvalho Pinheiro, M. Carello\",\"doi\":\"10.1109/ACDSA59508.2024.10467491\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This article conducts a preliminary exploration of an innovative Reinforcement Learning RL-based control system applied to the Torque Allocation problem in a fully electric All-Wheel-Drive vehicle. The investigation delves into the untapped degrees of freedom in four-motor Electric Vehicles beyond total torque request and Torque Vectoring bias. Utilizing a Deep Deterministic Policy Gradient (DDPG) agent, the RL architecture is implemented within MATLAB/Simulink, incorporating co-simulation with VI-CarRealTime for vehicle dynamics. Comparative analysis against reference Torque Allocation strategies (open differential, FWD, RWD) is performed, assessing key performance factors in the reward function. The most successful RL system, trained with Second Order Sliding Mode Suboptimal torque vectoring algorithm, surpasses the average performance of reference strategies. Nevertheless, challenges such as marginal advantages, repeatability issues, prolonged training durations, and a lack of interpretability are noted.\",\"PeriodicalId\":518964,\"journal\":{\"name\":\"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)\",\"volume\":\"21 4\",\"pages\":\"1-6\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ACDSA59508.2024.10467491\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence, Computer, Data Sciences and Applications (ACDSA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ACDSA59508.2024.10467491","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文对基于强化学习 RL 的创新控制系统进行了初步探索,该系统适用于全电动全轮驱动汽车的扭矩分配问题。除了总扭矩要求和扭矩矢量偏置之外,该研究还深入探讨了四电机电动汽车中尚未开发的自由度。利用深度确定性策略梯度(DDPG)代理,在 MATLAB/Simulink 中实现了 RL 架构,并结合 VI-CarRealTime 对车辆动态进行了协同模拟。与参考扭矩分配策略(开放式差速器、全轮驱动、全轮驱动)进行比较分析,评估奖励函数中的关键性能因素。采用二阶滑动模式次优扭矩矢量算法训练的 RL 系统最为成功,其平均性能超过了参考策略。尽管如此,我们也注意到了一些挑战,如边际优势、可重复性问题、训练时间过长以及缺乏可解释性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Reinforcement learning based control for torque allocation in electric vehicles: a preliminary analysis
This article conducts a preliminary exploration of an innovative Reinforcement Learning RL-based control system applied to the Torque Allocation problem in a fully electric All-Wheel-Drive vehicle. The investigation delves into the untapped degrees of freedom in four-motor Electric Vehicles beyond total torque request and Torque Vectoring bias. Utilizing a Deep Deterministic Policy Gradient (DDPG) agent, the RL architecture is implemented within MATLAB/Simulink, incorporating co-simulation with VI-CarRealTime for vehicle dynamics. Comparative analysis against reference Torque Allocation strategies (open differential, FWD, RWD) is performed, assessing key performance factors in the reward function. The most successful RL system, trained with Second Order Sliding Mode Suboptimal torque vectoring algorithm, surpasses the average performance of reference strategies. Nevertheless, challenges such as marginal advantages, repeatability issues, prolonged training durations, and a lack of interpretability are noted.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信