Zillur Rahim, Mark Watson, Stuart Wilson, Pablo Barbero
{"title":"改进完井和压裂技术,提高效率和油气产量的可持续性","authors":"Zillur Rahim, Mark Watson, Stuart Wilson, Pablo Barbero","doi":"10.2118/217901-ms","DOIUrl":null,"url":null,"abstract":"\n To attain higher hydrocarbon production and maintain oil and gas rates at optimal values for a determined time require prudent drilling, and subsequently completing and fracturing the well. are some of the essential criteria for positive cash flow.\n Oil and gas production is essential to meet world energy demand. The objective of any hydrocarbon field development is to attain higher sustained production rates. The need for the use of best practices in drilling, completion, fracturing, and production management during the duration of a well becomes essential. Drilling of long horizontal laterals through the reservoir section has been a game-changing alternate to vertical wells. Production is substantially increased with horizontal wells; long-term sustainability is achieved and development cost is considerably reduced.\n This paper highlights state of the art completions and fracturing technology used in moderate to tight oil and gas reservoirs for enhanced and sustained productivity. After proper assessment of the field using data from geoscience, delineation wells, and logs, an optimal horizontal drilling design is put together. Wells drilled in the field can be completed in multiple ways depending on the reservoir properties, well trajectory, and production objectives. The best completions are those that are customized for the reservoir parameters and well trajectory and will provide optimal inflow of reservoir fluids to the well. The best fracturing technique is to place a high conductivity path between the well and reservoir without causing damage to either the reservoir or completions. Depending on the reservoir, acid or proppants are selected such that fracture conductivity is maintained through most of well life. Many examples are provided in this paper.","PeriodicalId":518997,"journal":{"name":"Day 1 Wed, February 21, 2024","volume":"183 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Improved Completions and Fracturing Technology Enhances Efficiency and Sustained Oil and Gas Production\",\"authors\":\"Zillur Rahim, Mark Watson, Stuart Wilson, Pablo Barbero\",\"doi\":\"10.2118/217901-ms\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n To attain higher hydrocarbon production and maintain oil and gas rates at optimal values for a determined time require prudent drilling, and subsequently completing and fracturing the well. are some of the essential criteria for positive cash flow.\\n Oil and gas production is essential to meet world energy demand. The objective of any hydrocarbon field development is to attain higher sustained production rates. The need for the use of best practices in drilling, completion, fracturing, and production management during the duration of a well becomes essential. Drilling of long horizontal laterals through the reservoir section has been a game-changing alternate to vertical wells. Production is substantially increased with horizontal wells; long-term sustainability is achieved and development cost is considerably reduced.\\n This paper highlights state of the art completions and fracturing technology used in moderate to tight oil and gas reservoirs for enhanced and sustained productivity. After proper assessment of the field using data from geoscience, delineation wells, and logs, an optimal horizontal drilling design is put together. Wells drilled in the field can be completed in multiple ways depending on the reservoir properties, well trajectory, and production objectives. The best completions are those that are customized for the reservoir parameters and well trajectory and will provide optimal inflow of reservoir fluids to the well. The best fracturing technique is to place a high conductivity path between the well and reservoir without causing damage to either the reservoir or completions. Depending on the reservoir, acid or proppants are selected such that fracture conductivity is maintained through most of well life. Many examples are provided in this paper.\",\"PeriodicalId\":518997,\"journal\":{\"name\":\"Day 1 Wed, February 21, 2024\",\"volume\":\"183 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Day 1 Wed, February 21, 2024\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/217901-ms\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Day 1 Wed, February 21, 2024","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/217901-ms","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Improved Completions and Fracturing Technology Enhances Efficiency and Sustained Oil and Gas Production
To attain higher hydrocarbon production and maintain oil and gas rates at optimal values for a determined time require prudent drilling, and subsequently completing and fracturing the well. are some of the essential criteria for positive cash flow.
Oil and gas production is essential to meet world energy demand. The objective of any hydrocarbon field development is to attain higher sustained production rates. The need for the use of best practices in drilling, completion, fracturing, and production management during the duration of a well becomes essential. Drilling of long horizontal laterals through the reservoir section has been a game-changing alternate to vertical wells. Production is substantially increased with horizontal wells; long-term sustainability is achieved and development cost is considerably reduced.
This paper highlights state of the art completions and fracturing technology used in moderate to tight oil and gas reservoirs for enhanced and sustained productivity. After proper assessment of the field using data from geoscience, delineation wells, and logs, an optimal horizontal drilling design is put together. Wells drilled in the field can be completed in multiple ways depending on the reservoir properties, well trajectory, and production objectives. The best completions are those that are customized for the reservoir parameters and well trajectory and will provide optimal inflow of reservoir fluids to the well. The best fracturing technique is to place a high conductivity path between the well and reservoir without causing damage to either the reservoir or completions. Depending on the reservoir, acid or proppants are selected such that fracture conductivity is maintained through most of well life. Many examples are provided in this paper.