利用经验数据进行基于机器学习的电池异常检测

Md Shahriar Nazim, Yeong Min Jang, ByungDeok Chung
{"title":"利用经验数据进行基于机器学习的电池异常检测","authors":"Md Shahriar Nazim, Yeong Min Jang, ByungDeok Chung","doi":"10.1109/ICAIIC60209.2024.10463489","DOIUrl":null,"url":null,"abstract":"In the context of energy storage systems (ESS), this work investigates the use of machine learning approaches for anomaly identification utilizing empirical site data. Making advantage of the empirical data gathered from the operational environment, the study concentrates on using precise anomaly detection techniques-mainly the Isolation Forest method. The Isolation forest approach is utilized to detect abnormalities in the empirical data obtained by ESS operations. It is well-known for its effectiveness in locating outliers in datasets. In order to improve the operational dependability and safety of Energy Storage Systems (ESS), this study explores the application of the Isolation Forest technique as a powerful tool for identifying anomalies in the site data. The results of the study show that, Isolation forest can detect anomalies with the accuracy of 99.43 %.","PeriodicalId":518256,"journal":{"name":"2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","volume":"62 ","pages":"847-850"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Machine Learning Based Battery Anomaly Detection Using Empirical Data\",\"authors\":\"Md Shahriar Nazim, Yeong Min Jang, ByungDeok Chung\",\"doi\":\"10.1109/ICAIIC60209.2024.10463489\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the context of energy storage systems (ESS), this work investigates the use of machine learning approaches for anomaly identification utilizing empirical site data. Making advantage of the empirical data gathered from the operational environment, the study concentrates on using precise anomaly detection techniques-mainly the Isolation Forest method. The Isolation forest approach is utilized to detect abnormalities in the empirical data obtained by ESS operations. It is well-known for its effectiveness in locating outliers in datasets. In order to improve the operational dependability and safety of Energy Storage Systems (ESS), this study explores the application of the Isolation Forest technique as a powerful tool for identifying anomalies in the site data. The results of the study show that, Isolation forest can detect anomalies with the accuracy of 99.43 %.\",\"PeriodicalId\":518256,\"journal\":{\"name\":\"2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"volume\":\"62 \",\"pages\":\"847-850\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICAIIC60209.2024.10463489\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2024 International Conference on Artificial Intelligence in Information and Communication (ICAIIC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICAIIC60209.2024.10463489","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在储能系统(ESS)方面,这项工作研究了利用经验现场数据进行异常识别的机器学习方法。本研究利用从运行环境中收集的经验数据,集中使用精确的异常检测技术--主要是隔离林方法。隔离林方法用于检测 ESS 运行所获经验数据中的异常。该方法以其在数据集中定位异常值的有效性而闻名。为了提高储能系统(ESS)的运行可靠性和安全性,本研究探索了隔离林技术的应用,将其作为识别现场数据异常的有力工具。研究结果表明,隔离林检测异常的准确率高达 99.43%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Machine Learning Based Battery Anomaly Detection Using Empirical Data
In the context of energy storage systems (ESS), this work investigates the use of machine learning approaches for anomaly identification utilizing empirical site data. Making advantage of the empirical data gathered from the operational environment, the study concentrates on using precise anomaly detection techniques-mainly the Isolation Forest method. The Isolation forest approach is utilized to detect abnormalities in the empirical data obtained by ESS operations. It is well-known for its effectiveness in locating outliers in datasets. In order to improve the operational dependability and safety of Energy Storage Systems (ESS), this study explores the application of the Isolation Forest technique as a powerful tool for identifying anomalies in the site data. The results of the study show that, Isolation forest can detect anomalies with the accuracy of 99.43 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信