{"title":"柔性变量的嵌入定理","authors":"S. Kaliman","doi":"10.1307/mmj/20226268","DOIUrl":null,"url":null,"abstract":". Let Z be an affine algebraic variety and X be a smooth flexible variety. We develop some criteria under which Z admits a closed embedding into X . In particular, we show that if X is isomorphic (as an algebraic variety) to a special linear group and dim X ≥ max(2 dim Z + 1 , dim T Z ) , then Z admits a closed embedding into X .","PeriodicalId":0,"journal":{"name":"","volume":null,"pages":null},"PeriodicalIF":0.0,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Embedding Theorems for Flexible Varieties\",\"authors\":\"S. Kaliman\",\"doi\":\"10.1307/mmj/20226268\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let Z be an affine algebraic variety and X be a smooth flexible variety. We develop some criteria under which Z admits a closed embedding into X . In particular, we show that if X is isomorphic (as an algebraic variety) to a special linear group and dim X ≥ max(2 dim Z + 1 , dim T Z ) , then Z admits a closed embedding into X .\",\"PeriodicalId\":0,\"journal\":{\"name\":\"\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1307/mmj/20226268\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1307/mmj/20226268","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0
摘要
.让 Z 是一个单独的代数簇,X 是一个光滑的可扩展簇。我们制定了一些标准,根据这些标准,Z 可以封闭地嵌入到 X 中。我们特别指出,如果 X 与一个特殊线性群同构(作为代数簇),且 dim X ≥ max(2 dim Z + 1 , dim T Z ) ,那么 Z 就有一个封闭的嵌入到 X 中。
. Let Z be an affine algebraic variety and X be a smooth flexible variety. We develop some criteria under which Z admits a closed embedding into X . In particular, we show that if X is isomorphic (as an algebraic variety) to a special linear group and dim X ≥ max(2 dim Z + 1 , dim T Z ) , then Z admits a closed embedding into X .