{"title":"具有分布延迟的舒尔曼勋爵热弹性季莫申科模型考奇问题解的衰减率","authors":"A. Choucha, S. Boulaaras, Rashid Jan, M. Alnegga","doi":"10.1515/dema-2023-0143","DOIUrl":null,"url":null,"abstract":"\n In this study, we address a Cauchy problem within the context of the one-dimensional Timoshenko system, incorporating a distributed delay term. The heat conduction aspect is described by the Lord-Shulman theory. Our demonstration establishes that the dissipation resulting from the coupling of the Timoshenko system with Lord-Shulman’s heat conduction is sufficiently robust to stabilize the system, albeit with a gradual decay rate. To support our findings, we convert the system into a first-order form and, utilizing the energy method in Fourier space, and derive point wise estimates for the Fourier transform of the solution. These estimates, in turn, provide evidence for the slow decay of the solution.","PeriodicalId":10995,"journal":{"name":"Demonstratio Mathematica","volume":null,"pages":null},"PeriodicalIF":2.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Decay rate of the solutions to the Cauchy problem of the Lord Shulman thermoelastic Timoshenko model with distributed delay\",\"authors\":\"A. Choucha, S. Boulaaras, Rashid Jan, M. Alnegga\",\"doi\":\"10.1515/dema-2023-0143\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, we address a Cauchy problem within the context of the one-dimensional Timoshenko system, incorporating a distributed delay term. The heat conduction aspect is described by the Lord-Shulman theory. Our demonstration establishes that the dissipation resulting from the coupling of the Timoshenko system with Lord-Shulman’s heat conduction is sufficiently robust to stabilize the system, albeit with a gradual decay rate. To support our findings, we convert the system into a first-order form and, utilizing the energy method in Fourier space, and derive point wise estimates for the Fourier transform of the solution. These estimates, in turn, provide evidence for the slow decay of the solution.\",\"PeriodicalId\":10995,\"journal\":{\"name\":\"Demonstratio Mathematica\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Demonstratio Mathematica\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1515/dema-2023-0143\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Demonstratio Mathematica","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1515/dema-2023-0143","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"MATHEMATICS","Score":null,"Total":0}
Decay rate of the solutions to the Cauchy problem of the Lord Shulman thermoelastic Timoshenko model with distributed delay
In this study, we address a Cauchy problem within the context of the one-dimensional Timoshenko system, incorporating a distributed delay term. The heat conduction aspect is described by the Lord-Shulman theory. Our demonstration establishes that the dissipation resulting from the coupling of the Timoshenko system with Lord-Shulman’s heat conduction is sufficiently robust to stabilize the system, albeit with a gradual decay rate. To support our findings, we convert the system into a first-order form and, utilizing the energy method in Fourier space, and derive point wise estimates for the Fourier transform of the solution. These estimates, in turn, provide evidence for the slow decay of the solution.
期刊介绍:
Demonstratio Mathematica publishes original and significant research on topics related to functional analysis and approximation theory. Please note that submissions related to other areas of mathematical research will no longer be accepted by the journal. The potential topics include (but are not limited to): -Approximation theory and iteration methods- Fixed point theory and methods of computing fixed points- Functional, ordinary and partial differential equations- Nonsmooth analysis, variational analysis and convex analysis- Optimization theory, variational inequalities and complementarity problems- For more detailed list of the potential topics please refer to Instruction for Authors. The journal considers submissions of different types of articles. "Research Articles" are focused on fundamental theoretical aspects, as well as on significant applications in science, engineering etc. “Rapid Communications” are intended to present information of exceptional novelty and exciting results of significant interest to the readers. “Review articles” and “Commentaries”, which present the existing literature on the specific topic from new perspectives, are welcome as well.