磁力作用下复杂动脉血管中心血管流动的变分多尺度稳定有限元模型

Q2 Mathematics
D. Sahoo, Anil Rathi, B. V. R. Kumar
{"title":"磁力作用下复杂动脉血管中心血管流动的变分多尺度稳定有限元模型","authors":"D. Sahoo, Anil Rathi, B. V. R. Kumar","doi":"10.1515/cmb-2023-0118","DOIUrl":null,"url":null,"abstract":"\n In this study, we present a variational multiscale stabilized finite element method for steady-state incompressible fluid flow under magnetic forces. In particular, an algebraic approach of approximating the subscales has been considered, and then, the stabilization parameters are derived using Fourier analysis. The proposed scheme is used to trace the blood flow dynamics in complex arterial vessels under multiple pathological conditions. We examine the pressure and stress distribution in addition to the flow pattern to assess the criticality of the diseased condition.","PeriodicalId":34018,"journal":{"name":"Computational and Mathematical Biophysics","volume":"24 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Variational multiscale stabilized FEM for cardiovascular flows in complex arterial vessels under magnetic forces\",\"authors\":\"D. Sahoo, Anil Rathi, B. V. R. Kumar\",\"doi\":\"10.1515/cmb-2023-0118\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n In this study, we present a variational multiscale stabilized finite element method for steady-state incompressible fluid flow under magnetic forces. In particular, an algebraic approach of approximating the subscales has been considered, and then, the stabilization parameters are derived using Fourier analysis. The proposed scheme is used to trace the blood flow dynamics in complex arterial vessels under multiple pathological conditions. We examine the pressure and stress distribution in addition to the flow pattern to assess the criticality of the diseased condition.\",\"PeriodicalId\":34018,\"journal\":{\"name\":\"Computational and Mathematical Biophysics\",\"volume\":\"24 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Computational and Mathematical Biophysics\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1515/cmb-2023-0118\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Computational and Mathematical Biophysics","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1515/cmb-2023-0118","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0

摘要

在本研究中,我们提出了磁力作用下稳态不可压缩流体流动的变分多尺度稳定有限元方法。其中,考虑了近似子尺度的代数方法,然后利用傅立叶分析法得出了稳定参数。所提出的方案被用于追踪多种病理条件下复杂动脉血管中的血流动力学。除了流动模式外,我们还研究了压力和应力分布,以评估病变条件的临界性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Variational multiscale stabilized FEM for cardiovascular flows in complex arterial vessels under magnetic forces
In this study, we present a variational multiscale stabilized finite element method for steady-state incompressible fluid flow under magnetic forces. In particular, an algebraic approach of approximating the subscales has been considered, and then, the stabilization parameters are derived using Fourier analysis. The proposed scheme is used to trace the blood flow dynamics in complex arterial vessels under multiple pathological conditions. We examine the pressure and stress distribution in addition to the flow pattern to assess the criticality of the diseased condition.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Computational and Mathematical Biophysics
Computational and Mathematical Biophysics Mathematics-Mathematical Physics
CiteScore
2.50
自引率
0.00%
发文量
8
审稿时长
30 weeks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信