{"title":"使用 EEMD-GRU 的数据分解和深度学习组合模型对屋顶太阳能发电量进行短期多步骤预测","authors":"N. Nhat, D. N. Huu, Thu Thi Hoai Nguyen","doi":"10.1063/5.0176951","DOIUrl":null,"url":null,"abstract":"In this study, an integrated forecasting model was developed by combining the ensemble empirical mode decomposition (EEMD) model and gated recurrent unit (GRU) neural network to accurately predict the rooftop solar power output at a specific power unit located in Tay Ninh province, Vietnam. The EEMD method was employed to decompose the solar power signals into multiple frequencies, allowing for a more comprehensive analysis. Subsequently, the GRU network, known for its ability to capture long-term dependencies, was utilized to forecast future values for each decomposition series. By merging the forecasted values obtained from the decomposition series, the final prediction for the solar power output was generated. To evaluate the efficacy of our proposed approach, a comparative analysis was undertaken against other forecasting models, including a single artificial neural network, long short-term memory network, and GRU, all of which solely considered the solar power series as input features. The experimental results provided compelling evidence of the superior performance of the EEMD-GRU model, especially when incorporating weather variables into the forecasting process, achieving the best results in all three forecasting scenarios (1-step, 2-step, and 3-step). For both forecasting targets, Inverter 155 and 156, the n-RMSE indices were 1.35%, 3.5%, and 4.8%, respectively, significantly lower than the compared single models. This integration of weather variables enhances the model's accuracy and reliability in predicting rooftop solar power output, establishing it as a valuable tool for efficient energy management in the region.","PeriodicalId":16953,"journal":{"name":"Journal of Renewable and Sustainable Energy","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Short-term multi-step forecasting of rooftop solar power generation using a combined data decomposition and deep learning model of EEMD-GRU\",\"authors\":\"N. Nhat, D. N. Huu, Thu Thi Hoai Nguyen\",\"doi\":\"10.1063/5.0176951\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this study, an integrated forecasting model was developed by combining the ensemble empirical mode decomposition (EEMD) model and gated recurrent unit (GRU) neural network to accurately predict the rooftop solar power output at a specific power unit located in Tay Ninh province, Vietnam. The EEMD method was employed to decompose the solar power signals into multiple frequencies, allowing for a more comprehensive analysis. Subsequently, the GRU network, known for its ability to capture long-term dependencies, was utilized to forecast future values for each decomposition series. By merging the forecasted values obtained from the decomposition series, the final prediction for the solar power output was generated. To evaluate the efficacy of our proposed approach, a comparative analysis was undertaken against other forecasting models, including a single artificial neural network, long short-term memory network, and GRU, all of which solely considered the solar power series as input features. The experimental results provided compelling evidence of the superior performance of the EEMD-GRU model, especially when incorporating weather variables into the forecasting process, achieving the best results in all three forecasting scenarios (1-step, 2-step, and 3-step). For both forecasting targets, Inverter 155 and 156, the n-RMSE indices were 1.35%, 3.5%, and 4.8%, respectively, significantly lower than the compared single models. This integration of weather variables enhances the model's accuracy and reliability in predicting rooftop solar power output, establishing it as a valuable tool for efficient energy management in the region.\",\"PeriodicalId\":16953,\"journal\":{\"name\":\"Journal of Renewable and Sustainable Energy\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Renewable and Sustainable Energy\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1063/5.0176951\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Renewable and Sustainable Energy","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1063/5.0176951","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Short-term multi-step forecasting of rooftop solar power generation using a combined data decomposition and deep learning model of EEMD-GRU
In this study, an integrated forecasting model was developed by combining the ensemble empirical mode decomposition (EEMD) model and gated recurrent unit (GRU) neural network to accurately predict the rooftop solar power output at a specific power unit located in Tay Ninh province, Vietnam. The EEMD method was employed to decompose the solar power signals into multiple frequencies, allowing for a more comprehensive analysis. Subsequently, the GRU network, known for its ability to capture long-term dependencies, was utilized to forecast future values for each decomposition series. By merging the forecasted values obtained from the decomposition series, the final prediction for the solar power output was generated. To evaluate the efficacy of our proposed approach, a comparative analysis was undertaken against other forecasting models, including a single artificial neural network, long short-term memory network, and GRU, all of which solely considered the solar power series as input features. The experimental results provided compelling evidence of the superior performance of the EEMD-GRU model, especially when incorporating weather variables into the forecasting process, achieving the best results in all three forecasting scenarios (1-step, 2-step, and 3-step). For both forecasting targets, Inverter 155 and 156, the n-RMSE indices were 1.35%, 3.5%, and 4.8%, respectively, significantly lower than the compared single models. This integration of weather variables enhances the model's accuracy and reliability in predicting rooftop solar power output, establishing it as a valuable tool for efficient energy management in the region.
期刊介绍:
The Journal of Renewable and Sustainable Energy (JRSE) is an interdisciplinary, peer-reviewed journal covering all areas of renewable and sustainable energy relevant to the physical science and engineering communities. The interdisciplinary approach of the publication ensures that the editors draw from researchers worldwide in a diverse range of fields.
Topics covered include:
Renewable energy economics and policy
Renewable energy resource assessment
Solar energy: photovoltaics, solar thermal energy, solar energy for fuels
Wind energy: wind farms, rotors and blades, on- and offshore wind conditions, aerodynamics, fluid dynamics
Bioenergy: biofuels, biomass conversion, artificial photosynthesis
Distributed energy generation: rooftop PV, distributed fuel cells, distributed wind, micro-hydrogen power generation
Power distribution & systems modeling: power electronics and controls, smart grid
Energy efficient buildings: smart windows, PV, wind, power management
Energy conversion: flexoelectric, piezoelectric, thermoelectric, other technologies
Energy storage: batteries, supercapacitors, hydrogen storage, other fuels
Fuel cells: proton exchange membrane cells, solid oxide cells, hybrid fuel cells, other
Marine and hydroelectric energy: dams, tides, waves, other
Transportation: alternative vehicle technologies, plug-in technologies, other
Geothermal energy