将近红外光谱仪(NIRS)作为鲈鱼肉(Tinca tinca)质量控制和可追溯性的工具。

A. Ortiz, C. Fallola, J. Labrador, José Martín-Gallardo, P. Rodríguez, C. Trenzado, Amalia Pérez-Jiménez, Susana García-Torres, David Tejerina
{"title":"将近红外光谱仪(NIRS)作为鲈鱼肉(Tinca tinca)质量控制和可追溯性的工具。","authors":"A. Ortiz, C. Fallola, J. Labrador, José Martín-Gallardo, P. Rodríguez, C. Trenzado, Amalia Pérez-Jiménez, Susana García-Torres, David Tejerina","doi":"10.12706/itea.2023.014","DOIUrl":null,"url":null,"abstract":"The nutritional composition of the diet directly affects the final quality of tench meat ( Tinca tinca L.). Thus, in recent years there has been a commitment to replace the protein component of feed with more sustainable vegetable alternatives. The experimental design from which this study is derived consisted of substituting organic fish meal with different percentages of organic soybean meal and pregerminated soybean meal. Therefore, the objective of this study was to evaluate the potential of Near infrared spectroscopy (NIRS) in categorizing tench according to the feed they received during its fattening phase and the quantification of the main nutritional parameters. Different spectral pretreatments were used previous to the partial least squares regressions for qualitative (PLS-DA) and quantitative (PLSR) predictions. The best PLS-DA model showed an accuracy for classification of 97.5 % in cross-validation; while the best PLSR model showed a good predictive capacity for dry matter (g/100 g), fat (g/100 g Dry Matter), and γ -tocopherol (mg/g dry matter) (0.689 ≤ R 2 vc ≤ 0.804), suggesting the possibility of performing a rapid and in situ control of the traceability and quality of tench meat by means of NIRS technology.","PeriodicalId":516767,"journal":{"name":"Informacion Tecnica Economica Agraria","volume":"14 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Espectroscopia en el infrarrojo cercano (NIRS) como herramienta para el control de calidad y trazabilidad de la carne de tenca (Tinca tinca)\",\"authors\":\"A. Ortiz, C. Fallola, J. Labrador, José Martín-Gallardo, P. Rodríguez, C. Trenzado, Amalia Pérez-Jiménez, Susana García-Torres, David Tejerina\",\"doi\":\"10.12706/itea.2023.014\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The nutritional composition of the diet directly affects the final quality of tench meat ( Tinca tinca L.). Thus, in recent years there has been a commitment to replace the protein component of feed with more sustainable vegetable alternatives. The experimental design from which this study is derived consisted of substituting organic fish meal with different percentages of organic soybean meal and pregerminated soybean meal. Therefore, the objective of this study was to evaluate the potential of Near infrared spectroscopy (NIRS) in categorizing tench according to the feed they received during its fattening phase and the quantification of the main nutritional parameters. Different spectral pretreatments were used previous to the partial least squares regressions for qualitative (PLS-DA) and quantitative (PLSR) predictions. The best PLS-DA model showed an accuracy for classification of 97.5 % in cross-validation; while the best PLSR model showed a good predictive capacity for dry matter (g/100 g), fat (g/100 g Dry Matter), and γ -tocopherol (mg/g dry matter) (0.689 ≤ R 2 vc ≤ 0.804), suggesting the possibility of performing a rapid and in situ control of the traceability and quality of tench meat by means of NIRS technology.\",\"PeriodicalId\":516767,\"journal\":{\"name\":\"Informacion Tecnica Economica Agraria\",\"volume\":\"14 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Informacion Tecnica Economica Agraria\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.12706/itea.2023.014\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Informacion Tecnica Economica Agraria","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.12706/itea.2023.014","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

日粮的营养成分直接影响到鲈鱼肉的最终质量。因此,近年来人们致力于用更具可持续性的蔬菜替代品来替代饲料中的蛋白质成分。本研究采用的实验设计包括用不同比例的有机豆粕和预发芽豆粕替代有机鱼粉。因此,本研究的目的是评估近红外光谱法(NIRS)在根据鲈鱼育肥期的饲料对其进行分类以及量化主要营养参数方面的潜力。在进行定性(PLS-DA)和定量(PLSR)预测的偏最小二乘法回归之前,使用了不同的光谱预处理。在交叉验证中,最佳 PLS-DA 模型的分类准确率为 97.5%;而最佳 PLSR 模型对干物质(克/100 克)、脂肪(克/100 克干物质)和γ-生育酚(毫克/克干物质)具有良好的预测能力(0.689 ≤ R 2 vc ≤ 0.804),这表明有可能通过近红外光谱技术对鲈鱼肉的可追溯性和质量进行快速原位控制。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Espectroscopia en el infrarrojo cercano (NIRS) como herramienta para el control de calidad y trazabilidad de la carne de tenca (Tinca tinca)
The nutritional composition of the diet directly affects the final quality of tench meat ( Tinca tinca L.). Thus, in recent years there has been a commitment to replace the protein component of feed with more sustainable vegetable alternatives. The experimental design from which this study is derived consisted of substituting organic fish meal with different percentages of organic soybean meal and pregerminated soybean meal. Therefore, the objective of this study was to evaluate the potential of Near infrared spectroscopy (NIRS) in categorizing tench according to the feed they received during its fattening phase and the quantification of the main nutritional parameters. Different spectral pretreatments were used previous to the partial least squares regressions for qualitative (PLS-DA) and quantitative (PLSR) predictions. The best PLS-DA model showed an accuracy for classification of 97.5 % in cross-validation; while the best PLSR model showed a good predictive capacity for dry matter (g/100 g), fat (g/100 g Dry Matter), and γ -tocopherol (mg/g dry matter) (0.689 ≤ R 2 vc ≤ 0.804), suggesting the possibility of performing a rapid and in situ control of the traceability and quality of tench meat by means of NIRS technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信