{"title":"转硫化途径与缺氧反应相关的新证据","authors":"Neha Jain, Manish Sharma","doi":"10.14429/dlsj.9.19478","DOIUrl":null,"url":null,"abstract":"When people ascend to a high altitude (HA), the body’s oxygen (O2) sensing mechanisms can sense perturbation in partial pressure and trigger adaptive responses. Rapid ascending to HA without ample time for acclimatization culminates in high-altitude illnesses, which can derail the body functioning of lowlanders moving to HA. High-altitude native populations have undergone positive natural selection to efficiently overcome the challenges of chronic hypobaric hypoxia (HH) and thus offer a unique model to understand physiological and genetic adaptations at high altitudes. In addition, evolutionary shreds of evidence propose that sulfur belonging to the same periodic table family can mimic oxygen to bypass its metabolic oxygen demand and modulate energy production.Intriguingly, our group has identified a strong association between diminished hydrogen sulfide (H2S)levels and HH-induced pathological responses. We have recently presented experimental evidence of cysteine deficit, which functionally regulates both lowered levels of endogenous H2S and HH-induced neuropathological responses. In this review, we sought to understand the role of H2S and the transsulfuration pathway at HA.","PeriodicalId":36557,"journal":{"name":"Defence Life Science Journal","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Emerging Evidence for Association of Transsulfuration Pathway with Hypoxia Responses\",\"authors\":\"Neha Jain, Manish Sharma\",\"doi\":\"10.14429/dlsj.9.19478\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"When people ascend to a high altitude (HA), the body’s oxygen (O2) sensing mechanisms can sense perturbation in partial pressure and trigger adaptive responses. Rapid ascending to HA without ample time for acclimatization culminates in high-altitude illnesses, which can derail the body functioning of lowlanders moving to HA. High-altitude native populations have undergone positive natural selection to efficiently overcome the challenges of chronic hypobaric hypoxia (HH) and thus offer a unique model to understand physiological and genetic adaptations at high altitudes. In addition, evolutionary shreds of evidence propose that sulfur belonging to the same periodic table family can mimic oxygen to bypass its metabolic oxygen demand and modulate energy production.Intriguingly, our group has identified a strong association between diminished hydrogen sulfide (H2S)levels and HH-induced pathological responses. We have recently presented experimental evidence of cysteine deficit, which functionally regulates both lowered levels of endogenous H2S and HH-induced neuropathological responses. In this review, we sought to understand the role of H2S and the transsulfuration pathway at HA.\",\"PeriodicalId\":36557,\"journal\":{\"name\":\"Defence Life Science Journal\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Defence Life Science Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.14429/dlsj.9.19478\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"Pharmacology, Toxicology and Pharmaceutics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Defence Life Science Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.14429/dlsj.9.19478","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"Pharmacology, Toxicology and Pharmaceutics","Score":null,"Total":0}
引用次数: 0
摘要
当人们上升到高海拔地区(HA)时,身体的氧气(O2)感应机制会感知到分压的扰动,并引发适应性反应。在没有充分适应时间的情况下快速上升到高海拔地区,最终会导致高海拔疾病,这可能会破坏低地移居到高海拔地区的人的身体机能。高海拔地区的原生种群经历了积极的自然选择,有效地克服了长期低压缺氧(HH)的挑战,因此为了解高海拔地区的生理和遗传适应性提供了一个独特的模型。此外,进化方面的一些证据表明,同属元素周期表家族的硫可以模拟氧,绕过氧的代谢需氧量,调节能量的产生。我们最近提出了半胱氨酸缺乏的实验证据,半胱氨酸对内源性 H2S 水平降低和 HH 诱导的神经病理反应都有功能调节作用。在本综述中,我们试图了解 H2S 和转硫化途径在 HA 中的作用。
Emerging Evidence for Association of Transsulfuration Pathway with Hypoxia Responses
When people ascend to a high altitude (HA), the body’s oxygen (O2) sensing mechanisms can sense perturbation in partial pressure and trigger adaptive responses. Rapid ascending to HA without ample time for acclimatization culminates in high-altitude illnesses, which can derail the body functioning of lowlanders moving to HA. High-altitude native populations have undergone positive natural selection to efficiently overcome the challenges of chronic hypobaric hypoxia (HH) and thus offer a unique model to understand physiological and genetic adaptations at high altitudes. In addition, evolutionary shreds of evidence propose that sulfur belonging to the same periodic table family can mimic oxygen to bypass its metabolic oxygen demand and modulate energy production.Intriguingly, our group has identified a strong association between diminished hydrogen sulfide (H2S)levels and HH-induced pathological responses. We have recently presented experimental evidence of cysteine deficit, which functionally regulates both lowered levels of endogenous H2S and HH-induced neuropathological responses. In this review, we sought to understand the role of H2S and the transsulfuration pathway at HA.