图表中的超级全面统治

Chaluvaraju B, Veena Bankapur
{"title":"图表中的超级全面统治","authors":"Chaluvaraju B, Veena Bankapur","doi":"10.21608/ejmaa.2024.220095.1043","DOIUrl":null,"url":null,"abstract":". Let G = ( V,E ) be a simple graph with no isolated vertices and p ≥ 3. A set D ⊆ V is a dominating set, abbreviated as DS , of a graph G , if every vertex in V − D is adjacent to some vertex in D , while a total dominating set, abbreviated as TDS , of G is a set T ⊆ V such that every vertex in G is adjacent to a vertices in T . A set T is a superlative total dominating set, abbreviated as STDS , of G if V − T is not contains a TDS but it contains a DS of G . The superlative total domination number γ st ( G ) is the minimum cardinality of a STDS of G . In this paper, we initiate a study on γ st ( G ) and its exact values for some classes of graphs. Furthermore, bounds in terms of order, size, degree and other domination related parameters are investigated.","PeriodicalId":91074,"journal":{"name":"Electronic journal of mathematical analysis and applications","volume":"27 12","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"SUPERLATIVE TOTAL DOMINATION IN GRAPHS\",\"authors\":\"Chaluvaraju B, Veena Bankapur\",\"doi\":\"10.21608/ejmaa.2024.220095.1043\",\"DOIUrl\":null,\"url\":null,\"abstract\":\". Let G = ( V,E ) be a simple graph with no isolated vertices and p ≥ 3. A set D ⊆ V is a dominating set, abbreviated as DS , of a graph G , if every vertex in V − D is adjacent to some vertex in D , while a total dominating set, abbreviated as TDS , of G is a set T ⊆ V such that every vertex in G is adjacent to a vertices in T . A set T is a superlative total dominating set, abbreviated as STDS , of G if V − T is not contains a TDS but it contains a DS of G . The superlative total domination number γ st ( G ) is the minimum cardinality of a STDS of G . In this paper, we initiate a study on γ st ( G ) and its exact values for some classes of graphs. Furthermore, bounds in terms of order, size, degree and other domination related parameters are investigated.\",\"PeriodicalId\":91074,\"journal\":{\"name\":\"Electronic journal of mathematical analysis and applications\",\"volume\":\"27 12\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Electronic journal of mathematical analysis and applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/ejmaa.2024.220095.1043\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Electronic journal of mathematical analysis and applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/ejmaa.2024.220095.1043","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

.设 G = ( V,E ) 是一个没有孤立顶点的简单图,且 p ≥ 3。如果 V - D 中的每个顶点都与 D 中的某个顶点相邻,则一个集合 D ⊆ V 是图 G 的支配集,缩写为 DS ,而 G 的总支配集,缩写为 TDS ,是一个集合 T ⊆ V,使得 G 中的每个顶点都与 T 中的顶点相邻。如果 V - T 不包含 TDS,但包含 G 的 DS,则集合 T 是 G 的超总支配集(缩写为 STDS)。超总支配数 γ st ( G ) 是 G 的 STDS 的最小卡片度。本文开始研究 γ st ( G ) 及其在某些图类中的精确值。此外,我们还研究了阶数、大小、度数和其他支配相关参数的边界。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
SUPERLATIVE TOTAL DOMINATION IN GRAPHS
. Let G = ( V,E ) be a simple graph with no isolated vertices and p ≥ 3. A set D ⊆ V is a dominating set, abbreviated as DS , of a graph G , if every vertex in V − D is adjacent to some vertex in D , while a total dominating set, abbreviated as TDS , of G is a set T ⊆ V such that every vertex in G is adjacent to a vertices in T . A set T is a superlative total dominating set, abbreviated as STDS , of G if V − T is not contains a TDS but it contains a DS of G . The superlative total domination number γ st ( G ) is the minimum cardinality of a STDS of G . In this paper, we initiate a study on γ st ( G ) and its exact values for some classes of graphs. Furthermore, bounds in terms of order, size, degree and other domination related parameters are investigated.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信