用鞍焦同位轨道生成混沌

Chaoxia Zhang, Shangzhou Zhang, Yuqing Zhang
{"title":"用鞍焦同位轨道生成混沌","authors":"Chaoxia Zhang, Shangzhou Zhang, Yuqing Zhang","doi":"10.1142/s0218127424500111","DOIUrl":null,"url":null,"abstract":"This paper develops an anticontrol approach to design a 3D continuous-time autonomous chaotic system with saddle-focus homoclinic orbit, based on two chaotification criterions for all orbits to be globally bounded with positive Lyapunov exponents. By using the Shil’nikov theorem, a Poincaré return map near the origin is found in the designed controlled system, confirming the existence of chaos in sense of the Smale horseshoe.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generating Chaos with Saddle-Focus Homoclinic Orbit\",\"authors\":\"Chaoxia Zhang, Shangzhou Zhang, Yuqing Zhang\",\"doi\":\"10.1142/s0218127424500111\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper develops an anticontrol approach to design a 3D continuous-time autonomous chaotic system with saddle-focus homoclinic orbit, based on two chaotification criterions for all orbits to be globally bounded with positive Lyapunov exponents. By using the Shil’nikov theorem, a Poincaré return map near the origin is found in the designed controlled system, confirming the existence of chaos in sense of the Smale horseshoe.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424500111\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424500111","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文基于两个混沌化判据,即所有轨道均为全局有界且Lyapunov指数为正,提出了一种反控制方法,以设计具有鞍焦同轴轨道的三维连续时间自主混沌系统。利用Shil'nikov定理,在设计的受控系统中发现了原点附近的Poincaré回归图,证实了Smale马蹄铁意义上混沌的存在。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Generating Chaos with Saddle-Focus Homoclinic Orbit
This paper develops an anticontrol approach to design a 3D continuous-time autonomous chaotic system with saddle-focus homoclinic orbit, based on two chaotification criterions for all orbits to be globally bounded with positive Lyapunov exponents. By using the Shil’nikov theorem, a Poincaré return map near the origin is found in the designed controlled system, confirming the existence of chaos in sense of the Smale horseshoe.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信