Covid-19和非Covid-19肺炎中的肝素酶-1和MMPs

V. Masola, G. Marrone, Carola Condoluci, Marco Franchi, Leonardo Stella, M. Biolato, Luca Miele, Giovanni Gambaro, Claudia Dal Vecchio, M. Onisto
{"title":"Covid-19和非Covid-19肺炎中的肝素酶-1和MMPs","authors":"V. Masola, G. Marrone, Carola Condoluci, Marco Franchi, Leonardo Stella, M. Biolato, Luca Miele, Giovanni Gambaro, Claudia Dal Vecchio, M. Onisto","doi":"10.1002/pgr2.14","DOIUrl":null,"url":null,"abstract":"Together with the ACE2 protein, heparan sulfate present at the level of the glycocalyx in the lung epithelia is considered a cellular “co‐receptor” for the viral spike protein that allows severe acute respiratory syndrome coronavirus 2 (SARS‐CoV) to infect cells. An increase in the amount and activity of heparanase‐1 (HPSE), the only enzyme capable of degrading the heparan sulfate (HS) chains of the glycocalyx and of the extracellular matrix, has been described in the plasma of patients affected by coronavirus disease 2019 (Covid‐19). Furthermore, the activity of matrix metalloproteases, or MMPs, has been related to matrix degradation, oxidative stress, and inflammation in Covid‐19 patients. In this study, we enrolled 26 Covid‐19 patients and 15 controls with diagnosis of non‐SARS‐CoV‐2‐related pneumonia. We evaluated the expression and activity of HPSE and the expression of MMPs in their serum together with other clinical markers of disease and inflammation. Results proved that HPSE expression and activity serum levels were significantly increased, whereas MMP2 and 9 were decreased in Covid‐19 versus non‐Covid‐19 pneumonia patients. In addition, IL‐6 levels were higher, whereas platelet and white blood cells were lower in Covid‐19 with respect to non‐Covid‐19 pneumonia. Moreover, MMP9 but not HPSE (expression and activity) levels were increased in Covid‐19 pneumonia patients with ongoing lung alteration over time. In summary, the present findings indicate that HPSE and MMPs are differentially regulated in Covid‐19 and non‐Covid‐19 pneumonia.","PeriodicalId":74585,"journal":{"name":"Proteoglycan research","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Heparanase‐1 and MMPs in Covid‐19 and non‐Covid‐19 pneumonia\",\"authors\":\"V. Masola, G. Marrone, Carola Condoluci, Marco Franchi, Leonardo Stella, M. Biolato, Luca Miele, Giovanni Gambaro, Claudia Dal Vecchio, M. Onisto\",\"doi\":\"10.1002/pgr2.14\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Together with the ACE2 protein, heparan sulfate present at the level of the glycocalyx in the lung epithelia is considered a cellular “co‐receptor” for the viral spike protein that allows severe acute respiratory syndrome coronavirus 2 (SARS‐CoV) to infect cells. An increase in the amount and activity of heparanase‐1 (HPSE), the only enzyme capable of degrading the heparan sulfate (HS) chains of the glycocalyx and of the extracellular matrix, has been described in the plasma of patients affected by coronavirus disease 2019 (Covid‐19). Furthermore, the activity of matrix metalloproteases, or MMPs, has been related to matrix degradation, oxidative stress, and inflammation in Covid‐19 patients. In this study, we enrolled 26 Covid‐19 patients and 15 controls with diagnosis of non‐SARS‐CoV‐2‐related pneumonia. We evaluated the expression and activity of HPSE and the expression of MMPs in their serum together with other clinical markers of disease and inflammation. Results proved that HPSE expression and activity serum levels were significantly increased, whereas MMP2 and 9 were decreased in Covid‐19 versus non‐Covid‐19 pneumonia patients. In addition, IL‐6 levels were higher, whereas platelet and white blood cells were lower in Covid‐19 with respect to non‐Covid‐19 pneumonia. Moreover, MMP9 but not HPSE (expression and activity) levels were increased in Covid‐19 pneumonia patients with ongoing lung alteration over time. In summary, the present findings indicate that HPSE and MMPs are differentially regulated in Covid‐19 and non‐Covid‐19 pneumonia.\",\"PeriodicalId\":74585,\"journal\":{\"name\":\"Proteoglycan research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proteoglycan research\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1002/pgr2.14\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proteoglycan research","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1002/pgr2.14","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

与 ACE2 蛋白一起,存在于肺上皮细胞糖萼水平的硫酸肝素被认为是病毒尖峰蛋白的细胞 "共受体",它使严重急性呼吸系统综合征冠状病毒 2(SARS-CoV)能够感染细胞。据描述,2019 年冠状病毒病(Covid-19)患者血浆中肝素酶-1(HPSE)的数量和活性增加,而肝素酶-1 是唯一能够降解糖萼和细胞外基质中硫酸肝素(HS)链的酶。此外,基质金属蛋白酶(MMPs)的活性与 Covid-19 患者的基质降解、氧化应激和炎症有关。在这项研究中,我们招募了 26 名 Covid-19 患者和 15 名对照组患者,他们都被诊断为非 SARS-CoV-2 相关肺炎。我们评估了他们血清中 HPSE 的表达和活性以及 MMPs 的表达,同时还评估了其他疾病和炎症的临床指标。结果证明,与非 Covid-19 肺炎患者相比,Covid-19 肺炎患者血清中 HPSE 的表达和活性水平明显升高,而 MMP2 和 9 则有所降低。此外,Covid-19 与非 Covid-19 肺炎患者相比,IL-6 水平更高,而血小板和白细胞水平更低。此外,Covid-19 肺炎患者的 MMP9(表达和活性)水平升高,而 HPSE(表达和活性)水平未升高,且随着时间的推移,肺部改变仍在持续。总之,本研究结果表明,在 Covid-19 肺炎和非 Covid-19 肺炎中,HPSE 和 MMPs 受到不同程度的调控。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Heparanase‐1 and MMPs in Covid‐19 and non‐Covid‐19 pneumonia
Together with the ACE2 protein, heparan sulfate present at the level of the glycocalyx in the lung epithelia is considered a cellular “co‐receptor” for the viral spike protein that allows severe acute respiratory syndrome coronavirus 2 (SARS‐CoV) to infect cells. An increase in the amount and activity of heparanase‐1 (HPSE), the only enzyme capable of degrading the heparan sulfate (HS) chains of the glycocalyx and of the extracellular matrix, has been described in the plasma of patients affected by coronavirus disease 2019 (Covid‐19). Furthermore, the activity of matrix metalloproteases, or MMPs, has been related to matrix degradation, oxidative stress, and inflammation in Covid‐19 patients. In this study, we enrolled 26 Covid‐19 patients and 15 controls with diagnosis of non‐SARS‐CoV‐2‐related pneumonia. We evaluated the expression and activity of HPSE and the expression of MMPs in their serum together with other clinical markers of disease and inflammation. Results proved that HPSE expression and activity serum levels were significantly increased, whereas MMP2 and 9 were decreased in Covid‐19 versus non‐Covid‐19 pneumonia patients. In addition, IL‐6 levels were higher, whereas platelet and white blood cells were lower in Covid‐19 with respect to non‐Covid‐19 pneumonia. Moreover, MMP9 but not HPSE (expression and activity) levels were increased in Covid‐19 pneumonia patients with ongoing lung alteration over time. In summary, the present findings indicate that HPSE and MMPs are differentially regulated in Covid‐19 and non‐Covid‐19 pneumonia.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信