具有三个自由度的哈密顿系统中的二维生成曲面和分割曲面

M. Katsanikas, Stephen Wiggins
{"title":"具有三个自由度的哈密顿系统中的二维生成曲面和分割曲面","authors":"M. Katsanikas, Stephen Wiggins","doi":"10.1142/s0218127424300027","DOIUrl":null,"url":null,"abstract":"In our previous work, we developed two methods for generalizing the construction of a periodic orbit dividing surface for a Hamiltonian system with three or more degrees of freedom. Starting with a periodic orbit, we extend it to form a torus or cylinder, which then becomes a higher-dimensional object within the energy surface (see [Katsanikas & Wiggins, 2021a, 2021b, 2023a, 2023b]). In this paper, we present two methods to construct dividing surfaces not from periodic orbits but by using 2D surfaces (2D geometrical objects) in a Hamiltonian system with three degrees of freedom. To illustrate the algorithm for this construction, we provide benchmark examples of three-degree-of-freedom Hamiltonian systems. Specifically, we employ the uncoupled and coupled cases of the quadratic normal form of a Hamiltonian system with three degrees of freedom.","PeriodicalId":13688,"journal":{"name":"Int. J. Bifurc. Chaos","volume":"18 6","pages":"2430002:1-2430002:13"},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"2D Generating Surfaces and Dividing Surfaces in Hamiltonian Systems with Three Degrees of Freedom\",\"authors\":\"M. Katsanikas, Stephen Wiggins\",\"doi\":\"10.1142/s0218127424300027\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In our previous work, we developed two methods for generalizing the construction of a periodic orbit dividing surface for a Hamiltonian system with three or more degrees of freedom. Starting with a periodic orbit, we extend it to form a torus or cylinder, which then becomes a higher-dimensional object within the energy surface (see [Katsanikas & Wiggins, 2021a, 2021b, 2023a, 2023b]). In this paper, we present two methods to construct dividing surfaces not from periodic orbits but by using 2D surfaces (2D geometrical objects) in a Hamiltonian system with three degrees of freedom. To illustrate the algorithm for this construction, we provide benchmark examples of three-degree-of-freedom Hamiltonian systems. Specifically, we employ the uncoupled and coupled cases of the quadratic normal form of a Hamiltonian system with three degrees of freedom.\",\"PeriodicalId\":13688,\"journal\":{\"name\":\"Int. J. Bifurc. Chaos\",\"volume\":\"18 6\",\"pages\":\"2430002:1-2430002:13\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Int. J. Bifurc. Chaos\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1142/s0218127424300027\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Int. J. Bifurc. Chaos","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1142/s0218127424300027","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在我们之前的工作中,我们开发了两种方法,用于对具有三个或更多自由度的哈密顿系统的周期轨道分割面的构造进行推广。从周期轨道开始,我们将其扩展成一个环或圆柱体,然后成为能量面中的一个高维物体(见 [Katsanikas & Wiggins, 2021a, 2021b, 2023a, 2023b])。在本文中,我们提出了两种方法,在具有三个自由度的哈密顿系统中,不是通过周期轨道,而是通过二维曲面(二维几何对象)来构建分割曲面。为了说明这种构造算法,我们提供了三自由度哈密顿系统的基准示例。具体来说,我们采用了具有三个自由度的哈密顿系统的二次法线形式的非耦合和耦合情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
2D Generating Surfaces and Dividing Surfaces in Hamiltonian Systems with Three Degrees of Freedom
In our previous work, we developed two methods for generalizing the construction of a periodic orbit dividing surface for a Hamiltonian system with three or more degrees of freedom. Starting with a periodic orbit, we extend it to form a torus or cylinder, which then becomes a higher-dimensional object within the energy surface (see [Katsanikas & Wiggins, 2021a, 2021b, 2023a, 2023b]). In this paper, we present two methods to construct dividing surfaces not from periodic orbits but by using 2D surfaces (2D geometrical objects) in a Hamiltonian system with three degrees of freedom. To illustrate the algorithm for this construction, we provide benchmark examples of three-degree-of-freedom Hamiltonian systems. Specifically, we employ the uncoupled and coupled cases of the quadratic normal form of a Hamiltonian system with three degrees of freedom.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信