深度学习医学图像分割方法:调查

مى مختار, هالة عبد الجليل, غادة خوريبه
{"title":"深度学习医学图像分割方法:调查","authors":"مى مختار, هالة عبد الجليل, غادة خوريبه","doi":"10.21608/fcihib.2024.189094.1079","DOIUrl":null,"url":null,"abstract":"—Medical image segmentation is essential for detecting and localizing tumors in medical image analysis. Image segmentation involves the identification of anatomical structures in images. Medical image segmentation starts with manual segmentation using Atlas methods, then auto-segmentation, facilitated by deep learning algorithms. Deep learning-based medical image segmentation retains a significant pledge in reducing treatment planning, radiation-related toxicities, and side effects. This study provides a complete overview of deep-learning medical image segmentation models. We review various deep-learning models and architectures applied to medical image segmentation, including fully convolutional networks, U-Net, and attention-based models. This literature review discusses using different loss functions, data augmentation techniques, and transfer learning in deep learning-based medical image segmentation and several types of medical image modality. Evaluation analysis encloses benchmark datasets for human body organs such as the brain, lungs, chest, and liver. Finally, we summarize the challenges and future directions of deep learning for medical image segmentation.","PeriodicalId":515131,"journal":{"name":"النشرة المعلوماتية في الحاسبات والمعلومات","volume":"80 2","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep Learning Medical Image Segmentation Methods: A Survey\",\"authors\":\"مى مختار, هالة عبد الجليل, غادة خوريبه\",\"doi\":\"10.21608/fcihib.2024.189094.1079\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"—Medical image segmentation is essential for detecting and localizing tumors in medical image analysis. Image segmentation involves the identification of anatomical structures in images. Medical image segmentation starts with manual segmentation using Atlas methods, then auto-segmentation, facilitated by deep learning algorithms. Deep learning-based medical image segmentation retains a significant pledge in reducing treatment planning, radiation-related toxicities, and side effects. This study provides a complete overview of deep-learning medical image segmentation models. We review various deep-learning models and architectures applied to medical image segmentation, including fully convolutional networks, U-Net, and attention-based models. This literature review discusses using different loss functions, data augmentation techniques, and transfer learning in deep learning-based medical image segmentation and several types of medical image modality. Evaluation analysis encloses benchmark datasets for human body organs such as the brain, lungs, chest, and liver. Finally, we summarize the challenges and future directions of deep learning for medical image segmentation.\",\"PeriodicalId\":515131,\"journal\":{\"name\":\"النشرة المعلوماتية في الحاسبات والمعلومات\",\"volume\":\"80 2\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"النشرة المعلوماتية في الحاسبات والمعلومات\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21608/fcihib.2024.189094.1079\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"النشرة المعلوماتية في الحاسبات والمعلومات","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21608/fcihib.2024.189094.1079","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

-在医学图像分析中,医学图像分割对于检测和定位肿瘤至关重要。图像分割包括识别图像中的解剖结构。医学图像分割首先是使用 Atlas 方法进行手动分割,然后在深度学习算法的帮助下进行自动分割。基于深度学习的医学图像分割在减少治疗计划、辐射相关毒性和副作用方面具有重要作用。本研究全面概述了深度学习医学影像分割模型。我们回顾了应用于医学图像分割的各种深度学习模型和架构,包括全卷积网络、U-Net 和基于注意力的模型。本文献综述讨论了在基于深度学习的医学图像分割中使用不同的损失函数、数据增强技术和迁移学习,以及几种类型的医学图像模式。评估分析包括大脑、肺部、胸部和肝脏等人体器官的基准数据集。最后,我们总结了深度学习在医学图像分割中面临的挑战和未来发展方向。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
Deep Learning Medical Image Segmentation Methods: A Survey
—Medical image segmentation is essential for detecting and localizing tumors in medical image analysis. Image segmentation involves the identification of anatomical structures in images. Medical image segmentation starts with manual segmentation using Atlas methods, then auto-segmentation, facilitated by deep learning algorithms. Deep learning-based medical image segmentation retains a significant pledge in reducing treatment planning, radiation-related toxicities, and side effects. This study provides a complete overview of deep-learning medical image segmentation models. We review various deep-learning models and architectures applied to medical image segmentation, including fully convolutional networks, U-Net, and attention-based models. This literature review discusses using different loss functions, data augmentation techniques, and transfer learning in deep learning-based medical image segmentation and several types of medical image modality. Evaluation analysis encloses benchmark datasets for human body organs such as the brain, lungs, chest, and liver. Finally, we summarize the challenges and future directions of deep learning for medical image segmentation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信