{"title":"PPY/Y2O3 复合材料随温度变化的介电特性","authors":"M. Riaz, M. Ali, F. Fareed, S. M. Ali, M. Alam","doi":"10.15251/jor.2024.201.13","DOIUrl":null,"url":null,"abstract":"The Y2O3 doped polypyrrole composites has been synthesized (PPy-Y2O3) through an insitu polymerization route, to get dielectric properties for potential applications. XRD confirmed the formation of the composites. SEM confirms the flakier structure in the PPyY2O3. The impedance of pure Y2O3 ~ 14 Ω, PPy ~12 Ω to PPy-10%Y2O3 ~10 Ω compositesdecreased, signify the increase in AC conductivity of PPy-Y2O3. The temperature-dependent dielectric properties follow the Maxwell-Wagner model. AC conductivity of the PPy/Y2O3, increased with an increase in temperature depending on Jonscher’s power law. Therefore, the present study suggested that PPy-Y2O3 composites can be considered useful for device applications.","PeriodicalId":49156,"journal":{"name":"Journal of Ovonic Research","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Temperature dependent dielectric characteristics of PPY/Y2O3 composite\",\"authors\":\"M. Riaz, M. Ali, F. Fareed, S. M. Ali, M. Alam\",\"doi\":\"10.15251/jor.2024.201.13\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The Y2O3 doped polypyrrole composites has been synthesized (PPy-Y2O3) through an insitu polymerization route, to get dielectric properties for potential applications. XRD confirmed the formation of the composites. SEM confirms the flakier structure in the PPyY2O3. The impedance of pure Y2O3 ~ 14 Ω, PPy ~12 Ω to PPy-10%Y2O3 ~10 Ω compositesdecreased, signify the increase in AC conductivity of PPy-Y2O3. The temperature-dependent dielectric properties follow the Maxwell-Wagner model. AC conductivity of the PPy/Y2O3, increased with an increase in temperature depending on Jonscher’s power law. Therefore, the present study suggested that PPy-Y2O3 composites can be considered useful for device applications.\",\"PeriodicalId\":49156,\"journal\":{\"name\":\"Journal of Ovonic Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Ovonic Research\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.15251/jor.2024.201.13\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Ovonic Research","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.15251/jor.2024.201.13","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Temperature dependent dielectric characteristics of PPY/Y2O3 composite
The Y2O3 doped polypyrrole composites has been synthesized (PPy-Y2O3) through an insitu polymerization route, to get dielectric properties for potential applications. XRD confirmed the formation of the composites. SEM confirms the flakier structure in the PPyY2O3. The impedance of pure Y2O3 ~ 14 Ω, PPy ~12 Ω to PPy-10%Y2O3 ~10 Ω compositesdecreased, signify the increase in AC conductivity of PPy-Y2O3. The temperature-dependent dielectric properties follow the Maxwell-Wagner model. AC conductivity of the PPy/Y2O3, increased with an increase in temperature depending on Jonscher’s power law. Therefore, the present study suggested that PPy-Y2O3 composites can be considered useful for device applications.
期刊介绍:
Journal of Ovonic Research (JOR) appears with six issues per year and is open to the reviews, papers, short communications and breakings news inserted as Short Notes, in the field of ovonic (mainly chalcogenide) materials for memories, smart materials based on ovonic materials (combinations of various elements including chalcogenides), materials with nano-structures based on various alloys, as well as semiconducting materials and alloys based on amorphous silicon, germanium, carbon in their various nanostructured forms, either simple or doped/alloyed with hydrogen, fluorine, chlorine and other elements of high interest for applications in electronics and optoelectronics. Papers on minerals with possible applications in electronics and optoelectronics are encouraged.