关于谢里夫的猜想

IF 0.5 4区 数学 Q3 MATHEMATICS
T. Fukaya, Kazuya Kato
{"title":"关于谢里夫的猜想","authors":"T. Fukaya, Kazuya Kato","doi":"10.1215/21562261-2023-0018","DOIUrl":null,"url":null,"abstract":"(1) This talk is about Iwasawa theory. In non-commutative geometry, the field F1, the field of one element (which is still an imaginary existence), is regarded as an important object. The spirit of Iwasawa theory is near to the idea of F1. In the analogy between Z and Fq[T ] (Fq is a finite field), we look for an analogue of F̄q[T ] = Fq[T ]⊗Fq F̄q on the Z-side. The analogue should be Z ⊗F1 F̄1, but this is an imaginary existence. Iwasawa used ∪r≥1Z[ζpr ] (p is a fixed prime number and ζpr is a primitive p-th root of unity) as an analogue of F̄q[T ] on the Z-side.","PeriodicalId":49149,"journal":{"name":"Kyoto Journal of Mathematics","volume":null,"pages":null},"PeriodicalIF":0.5000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"27","resultStr":"{\"title\":\"On conjectures of Sharifi\",\"authors\":\"T. Fukaya, Kazuya Kato\",\"doi\":\"10.1215/21562261-2023-0018\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"(1) This talk is about Iwasawa theory. In non-commutative geometry, the field F1, the field of one element (which is still an imaginary existence), is regarded as an important object. The spirit of Iwasawa theory is near to the idea of F1. In the analogy between Z and Fq[T ] (Fq is a finite field), we look for an analogue of F̄q[T ] = Fq[T ]⊗Fq F̄q on the Z-side. The analogue should be Z ⊗F1 F̄1, but this is an imaginary existence. Iwasawa used ∪r≥1Z[ζpr ] (p is a fixed prime number and ζpr is a primitive p-th root of unity) as an analogue of F̄q[T ] on the Z-side.\",\"PeriodicalId\":49149,\"journal\":{\"name\":\"Kyoto Journal of Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.5000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"27\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Kyoto Journal of Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1215/21562261-2023-0018\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Kyoto Journal of Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1215/21562261-2023-0018","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 27

摘要

(1) 本讲座是关于岩泽理论的。在非交换几何学中,场 F1,即一元场(它仍然是一种虚存在),被视为一个重要的对象。岩泽理论的精神接近于 F1 的思想。根据 Z 与 Fq[T ](Fq 是有限域)的类比,我们在 Z 侧寻找 F̄q[T ] = Fq[T ]⊗Fq F̄q 的类比。与之类似的应该是 Z ⊗F1 F̄1,但这是一种想象的存在。岩泽用∪r≥1Z[ζpr ](p 是固定素数,ζpr 是一元的原始 p 次根)作为 F̄q[T ] 在 Z 边上的类似物。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
On conjectures of Sharifi
(1) This talk is about Iwasawa theory. In non-commutative geometry, the field F1, the field of one element (which is still an imaginary existence), is regarded as an important object. The spirit of Iwasawa theory is near to the idea of F1. In the analogy between Z and Fq[T ] (Fq is a finite field), we look for an analogue of F̄q[T ] = Fq[T ]⊗Fq F̄q on the Z-side. The analogue should be Z ⊗F1 F̄1, but this is an imaginary existence. Iwasawa used ∪r≥1Z[ζpr ] (p is a fixed prime number and ζpr is a primitive p-th root of unity) as an analogue of F̄q[T ] on the Z-side.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.10
自引率
16.70%
发文量
23
审稿时长
>12 weeks
期刊介绍: The Kyoto Journal of Mathematics publishes original research papers at the forefront of pure mathematics, including surveys that contribute to advances in pure mathematics.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
确定
请完成安全验证×
copy
已复制链接
快去分享给好友吧!
我知道了
右上角分享
点击右上角分享
0
联系我们:info@booksci.cn Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。 Copyright © 2023 布克学术 All rights reserved.
京ICP备2023020795号-1
ghs 京公网安备 11010802042870号
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术官方微信